Tree-based Bayesian Mixture Model for Competing Risks


Alexis Bellot, Mihaela Schaar ;
Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, PMLR 84:910-918, 2018.


Many chronic diseases possess a shared biology. Therapies designed for patients at risk of multiple diseases need to account for the shared impact they may have on related diseases to ensure maximum overall well-being. Learning from data in this setting differs from classical survival analysis methods since the incidence of an event of interest may be obscured by other related competing events. We develop a semi-parametric Bayesian regression model for survival analysis with competing risks, which can be used for jointly assessing a patient’s risk of multiple (competing) adverse outcomes. We construct a Hierarchical Bayesian Mixture (HBM) model to describe survival paths in which a patient’s covariates influence both the estimation of the type of adverse event and the subsequent survival trajectory through Multivariate Random Forests. In addition variable importance measures, which are essential for clinical interpretability are induced naturally by our model. We aim with this setting to provide accurate individual estimates but also interpretable conclusions for use as a clinical decision support tool. We compare our method with various state-of-the-art benchmarks on both synthetic and clinical data.

Related Material