Mixed Membership Word Embeddings for Computational Social Science

James Foulds
Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, PMLR 84:86-95, 2018.

Abstract

Word embeddings improve the performance of NLP systems by revealing the hidden structural relationships between words. Despite their success in many applications, word embeddings have seen very little use in computational social science NLP tasks, presumably due to their reliance on big data, and to a lack of interpretability. I propose a probabilistic model-based word embedding method which can recover interpretable embeddings, without big data. The key insight is to leverage mixed membership modeling, in which global representations are shared, but individual entities (i.e. dictionary words) are free to use these representations to uniquely differing degrees. I show how to train the model using a combination of state-of-the-art training techniques for word embeddings and topic models. The experimental results show an improvement in predictive language modeling of up to 63% in MRR over the skip-gram, and demonstrate that the representations are beneficial for supervised learning. I illustrate the interpretability of the models with computational social science case studies on State of the Union addresses and NIPS articles.

Cite this Paper


BibTeX
@InProceedings{pmlr-v84-foulds18a, title = {Mixed Membership Word Embeddings for Computational Social Science}, author = {James Foulds}, booktitle = {Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics}, pages = {86--95}, year = {2018}, editor = {Amos Storkey and Fernando Perez-Cruz}, volume = {84}, series = {Proceedings of Machine Learning Research}, month = {09--11 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v84/foulds18a/foulds18a.pdf}, url = { http://proceedings.mlr.press/v84/foulds18a.html }, abstract = {Word embeddings improve the performance of NLP systems by revealing the hidden structural relationships between words. Despite their success in many applications, word embeddings have seen very little use in computational social science NLP tasks, presumably due to their reliance on big data, and to a lack of interpretability. I propose a probabilistic model-based word embedding method which can recover interpretable embeddings, without big data. The key insight is to leverage mixed membership modeling, in which global representations are shared, but individual entities (i.e. dictionary words) are free to use these representations to uniquely differing degrees. I show how to train the model using a combination of state-of-the-art training techniques for word embeddings and topic models. The experimental results show an improvement in predictive language modeling of up to 63% in MRR over the skip-gram, and demonstrate that the representations are beneficial for supervised learning. I illustrate the interpretability of the models with computational social science case studies on State of the Union addresses and NIPS articles.} }
Endnote
%0 Conference Paper %T Mixed Membership Word Embeddings for Computational Social Science %A James Foulds %B Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2018 %E Amos Storkey %E Fernando Perez-Cruz %F pmlr-v84-foulds18a %I PMLR %P 86--95 %U http://proceedings.mlr.press/v84/foulds18a.html %V 84 %X Word embeddings improve the performance of NLP systems by revealing the hidden structural relationships between words. Despite their success in many applications, word embeddings have seen very little use in computational social science NLP tasks, presumably due to their reliance on big data, and to a lack of interpretability. I propose a probabilistic model-based word embedding method which can recover interpretable embeddings, without big data. The key insight is to leverage mixed membership modeling, in which global representations are shared, but individual entities (i.e. dictionary words) are free to use these representations to uniquely differing degrees. I show how to train the model using a combination of state-of-the-art training techniques for word embeddings and topic models. The experimental results show an improvement in predictive language modeling of up to 63% in MRR over the skip-gram, and demonstrate that the representations are beneficial for supervised learning. I illustrate the interpretability of the models with computational social science case studies on State of the Union addresses and NIPS articles.
APA
Foulds, J.. (2018). Mixed Membership Word Embeddings for Computational Social Science. Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 84:86-95 Available from http://proceedings.mlr.press/v84/foulds18a.html .

Related Material