Learning linear structural equation models in polynomial time and sample complexity
[edit]
Proceedings of the TwentyFirst International Conference on Artificial Intelligence and Statistics, PMLR 84:14661475, 2018.
Abstract
The problem of learning structural equation models (SEMs) from data is a fundamental problem in causal inference. We develop a new algorithm — which is computationally and statistically efficient and works in the highdimensional regime — for learning linear SEMs from purely observational data with arbitrary noise distribution. We consider three aspects of the problem: identifiability, computational efficiency, and statistical efficiency. We show that when data is generated from a linear SEM over p nodes and maximum Markov blanket size d, our algorithm recovers the directed acyclic graph (DAG) structure of the SEM under an identifiability condition that is more general than those considered in the literature, and without faithfulness assumptions. In the population setting, our algorithm recovers the DAG structure in $O(p(d + \log p))$ operations. In the finite sample setting, if the estimated precision matrix is sparse, our algorithm has a smoothed complexity of $\tilde{O}(p^3 + pd^{4})$, while if the estimated precision matrix is dense, our algorithm has a smoothed complexity of $\tilde{O}(p^5)$. For subGaussian and bounded ($4m$th, $m$ being positive integer) moment noise, our algorithm has a sample complexity of $\mathcal{O}(\frac{d^4}{\varepsilon^2} \log (\frac{p}{\sqrt{δ}}))$ and $\mathcal{O}(\frac{d^4}{\varepsilon^2} (\frac{p^2}{δ})^{\nicefrac{1}{m}})$ resp., to achieve $\varepsilon$ elementwise additive error with respect to the true autoregression matrix with probability at least $1  δ$.
Related Material


