Robust Active Label Correction

Jan Kremer, Fei Sha, Christian Igel
Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, PMLR 84:308-316, 2018.

Abstract

Active label correction addresses the problem of learning from input data for which noisy labels are available (e.g., from imprecise measurements or crowd-sourcing) and each true label can be obtained at a significant cost (e.g., through additional measurements or human experts). To minimize these costs, we are interested in identifying training patterns for which knowing the true labels maximally improves the learning performance. We approximate the true label noise by a model that learns the aspects of the noise that are class-conditional (i.e., independent of the input given the observed label). To select labels for correction, we adopt the active learning strategy of maximizing the expected model change. We consider the change in regularized empirical risk functionals that use different pointwise loss functions for patterns with noisy and true labels, respectively. Different loss functions for the noisy data lead to different active label correction algorithms. If loss functions consider the label noise rates, these rates are estimated during learning, where importance weighting compensates for the sampling bias. We show empirically that viewing the true label as a latent variable and computing the maximum likelihood estimate of the model parameters performs well across all considered problems. A maximum a posteriori estimate of the model parameters was beneficial in most test cases. An image classification experiment using convolutional neural networks demonstrates that the class-conditional noise model, which can be learned efficiently, can guide re-labeling in real-world applications.

Cite this Paper


BibTeX
@InProceedings{pmlr-v84-kremer18a, title = {Robust Active Label Correction}, author = {Kremer, Jan and Sha, Fei and Igel, Christian}, booktitle = {Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics}, pages = {308--316}, year = {2018}, editor = {Storkey, Amos and Perez-Cruz, Fernando}, volume = {84}, series = {Proceedings of Machine Learning Research}, month = {09--11 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v84/kremer18a/kremer18a.pdf}, url = {https://proceedings.mlr.press/v84/kremer18a.html}, abstract = {Active label correction addresses the problem of learning from input data for which noisy labels are available (e.g., from imprecise measurements or crowd-sourcing) and each true label can be obtained at a significant cost (e.g., through additional measurements or human experts). To minimize these costs, we are interested in identifying training patterns for which knowing the true labels maximally improves the learning performance. We approximate the true label noise by a model that learns the aspects of the noise that are class-conditional (i.e., independent of the input given the observed label). To select labels for correction, we adopt the active learning strategy of maximizing the expected model change. We consider the change in regularized empirical risk functionals that use different pointwise loss functions for patterns with noisy and true labels, respectively. Different loss functions for the noisy data lead to different active label correction algorithms. If loss functions consider the label noise rates, these rates are estimated during learning, where importance weighting compensates for the sampling bias. We show empirically that viewing the true label as a latent variable and computing the maximum likelihood estimate of the model parameters performs well across all considered problems. A maximum a posteriori estimate of the model parameters was beneficial in most test cases. An image classification experiment using convolutional neural networks demonstrates that the class-conditional noise model, which can be learned efficiently, can guide re-labeling in real-world applications.} }
Endnote
%0 Conference Paper %T Robust Active Label Correction %A Jan Kremer %A Fei Sha %A Christian Igel %B Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2018 %E Amos Storkey %E Fernando Perez-Cruz %F pmlr-v84-kremer18a %I PMLR %P 308--316 %U https://proceedings.mlr.press/v84/kremer18a.html %V 84 %X Active label correction addresses the problem of learning from input data for which noisy labels are available (e.g., from imprecise measurements or crowd-sourcing) and each true label can be obtained at a significant cost (e.g., through additional measurements or human experts). To minimize these costs, we are interested in identifying training patterns for which knowing the true labels maximally improves the learning performance. We approximate the true label noise by a model that learns the aspects of the noise that are class-conditional (i.e., independent of the input given the observed label). To select labels for correction, we adopt the active learning strategy of maximizing the expected model change. We consider the change in regularized empirical risk functionals that use different pointwise loss functions for patterns with noisy and true labels, respectively. Different loss functions for the noisy data lead to different active label correction algorithms. If loss functions consider the label noise rates, these rates are estimated during learning, where importance weighting compensates for the sampling bias. We show empirically that viewing the true label as a latent variable and computing the maximum likelihood estimate of the model parameters performs well across all considered problems. A maximum a posteriori estimate of the model parameters was beneficial in most test cases. An image classification experiment using convolutional neural networks demonstrates that the class-conditional noise model, which can be learned efficiently, can guide re-labeling in real-world applications.
APA
Kremer, J., Sha, F. & Igel, C.. (2018). Robust Active Label Correction. Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 84:308-316 Available from https://proceedings.mlr.press/v84/kremer18a.html.

Related Material