Regional Multi-Armed Bandits

Zhiyang Wang, Ruida Zhou, Cong Shen
Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, PMLR 84:510-518, 2018.

Abstract

We consider a variant of the classic multi-armed bandit problem where the expected reward of each arm is a function of an unknown parameter. The arms are divided into different groups, each of which has a common parameter. Therefore, when the player selects an arm at each time slot, information of other arms in the same group is also revealed. This regional bandit model naturally bridges the non-informative bandit setting where the player can only learn the chosen arm, and the global bandit model where sampling one arms reveals information of all arms. We propose an efficient algorithm, UCB-g, that solves the regional bandit problem by combining the Upper Confidence Bound (UCB) and greedy principles. Both parameter-dependent and parameter-free regret upper bounds are derived. We also establish a matching lower bound, which proves the order-optimality of UCB-g. Moreover, we propose SW-UCB-g, which is an extension of UCB-g for a non-stationary environment where the parameters slowly vary over time.

Cite this Paper


BibTeX
@InProceedings{pmlr-v84-wang18b, title = {Regional Multi-Armed Bandits}, author = {Wang, Zhiyang and Zhou, Ruida and Shen, Cong}, booktitle = {Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics}, pages = {510--518}, year = {2018}, editor = {Storkey, Amos and Perez-Cruz, Fernando}, volume = {84}, series = {Proceedings of Machine Learning Research}, month = {09--11 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v84/wang18b/wang18b.pdf}, url = {https://proceedings.mlr.press/v84/wang18b.html}, abstract = {We consider a variant of the classic multi-armed bandit problem where the expected reward of each arm is a function of an unknown parameter. The arms are divided into different groups, each of which has a common parameter. Therefore, when the player selects an arm at each time slot, information of other arms in the same group is also revealed. This regional bandit model naturally bridges the non-informative bandit setting where the player can only learn the chosen arm, and the global bandit model where sampling one arms reveals information of all arms. We propose an efficient algorithm, UCB-g, that solves the regional bandit problem by combining the Upper Confidence Bound (UCB) and greedy principles. Both parameter-dependent and parameter-free regret upper bounds are derived. We also establish a matching lower bound, which proves the order-optimality of UCB-g. Moreover, we propose SW-UCB-g, which is an extension of UCB-g for a non-stationary environment where the parameters slowly vary over time.} }
Endnote
%0 Conference Paper %T Regional Multi-Armed Bandits %A Zhiyang Wang %A Ruida Zhou %A Cong Shen %B Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2018 %E Amos Storkey %E Fernando Perez-Cruz %F pmlr-v84-wang18b %I PMLR %P 510--518 %U https://proceedings.mlr.press/v84/wang18b.html %V 84 %X We consider a variant of the classic multi-armed bandit problem where the expected reward of each arm is a function of an unknown parameter. The arms are divided into different groups, each of which has a common parameter. Therefore, when the player selects an arm at each time slot, information of other arms in the same group is also revealed. This regional bandit model naturally bridges the non-informative bandit setting where the player can only learn the chosen arm, and the global bandit model where sampling one arms reveals information of all arms. We propose an efficient algorithm, UCB-g, that solves the regional bandit problem by combining the Upper Confidence Bound (UCB) and greedy principles. Both parameter-dependent and parameter-free regret upper bounds are derived. We also establish a matching lower bound, which proves the order-optimality of UCB-g. Moreover, we propose SW-UCB-g, which is an extension of UCB-g for a non-stationary environment where the parameters slowly vary over time.
APA
Wang, Z., Zhou, R. & Shen, C.. (2018). Regional Multi-Armed Bandits. Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 84:510-518 Available from https://proceedings.mlr.press/v84/wang18b.html.

Related Material