Learning Neural Parsers with Deterministic Differentiable Imitation Learning


Tanmay Shankar, Nicholas Rhinehart, Katharina Muelling, Kris M. Kitani ;
Proceedings of The 2nd Conference on Robot Learning, PMLR 87:592-604, 2018.


We explore the problem of learning to decompose spatial tasks into segments, as exemplified by the problem of a painting robot covering a large object. Inspired by the ability of classical decision tree algorithms to construct structured parti- tions of their input spaces, we formulate the problem of decomposing objects into segments as a parsing approach. We make the insight that the derivation of a parse-tree that decomposes the object into segments closely resembles a decision tree constructed by ID3, which can be done when the ground-truth available. We learn to imitate an expert parsing oracle, such that our neural parser can generalize to parse natural images without ground truth. We introduce a novel deterministic policy gradient update, DRAG (i.e., DeteRministically AGgrevate) in the form of a deterministic actor-critic variant of AggreVaTeD [1], to train our neural parser. From another perspective, our approach is a variant of the Deterministic Policy Gradient [2, 3] suitable for the imitation learning setting. The deterministic policy representation offered by training our neural parser with DRAG allows it to outperform state of the art imitation and reinforcement learning approaches.

Related Material