Extreme Stochastic Variational Inference: Distributed Inference for Large Scale Mixture Models

[edit]

Jiong Zhang, Parameswaran Raman, Shihao Ji, Hsiang-Fu Yu, S.V.N. Vishwanathan, Inderjit Dhillon ;
Proceedings of Machine Learning Research, PMLR 89:935-943, 2019.

Abstract

Mixture of exponential family models are among the most fundamental and widely used statistical models. Stochastic variational inference (SVI), the state-of-the-art algorithm for parameter estimation in such models is inherently serial. Moreover, it requires the parameters to fit in the memory of a single processor; this poses serious limitations on scalability when the number of parameters is in billions. In this paper, we present extreme stochastic variational inference (ESVI), a distributed, asynchronous and lock-free algorithm to perform variational inference for mixture models on massive real world datasets. ESVI overcomes the limitations of SVI by requiring that each processor only access a subset of the data and a subset of the parameters, thus providing data and model parallelism simultaneously. Our empirical study demonstrates that ESVI not only outperforms VI and SVI in wallclock-time, but also achieves a better quality solution. To further speed up computation and save memory when fitting large number of topics, we propose a variant ESVI-TOPK which maintains only the top-k important topics. Empirically, we found that using top 25% topics suffices to achieve the same accuracy as storing all the topics.

Related Material