Exploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net

[edit]

Alexander Lorbert, David Eis, Victoria Kostina, David Blei, Peter Ramadge ;
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, PMLR 9:477-484, 2010.

Abstract

A new approach to regression regularization called the Pairwise Elastic Net is proposed. Like the Elastic Net, it simultaneously performs automatic variable selection and continuous shrinkage. In addition, the Pairwise Elastic Net encourages the grouping of strongly correlated predictors based on a pairwise similarity measure. We give examples of how the Pairwise Elastic Net can be used to achieve the objectives of Ridge regression, the Lasso, the Elastic Net, and Group Lasso. Finally, we present a coordinate descent algorithm to solve the Pairwise Elastic Net.

Related Material