Communication Complexity in Locally Private Distribution Estimation and Heavy Hitters


Jayadev Acharya, Ziteng Sun ;
Proceedings of the 36th International Conference on Machine Learning, PMLR 97:51-60, 2019.


We consider the problems of distribution estimation, and heavy hitter (frequency) estimation under privacy, and communication constraints. While the constraints have been studied separately, optimal schemes for one are sub-optimal for the other. We propose a sample-optimal $\eps$-locally differentially private (LDP) scheme for distribution estimation, where each user communicates one bit, and requires no public randomness. We also show that Hadamard Response, a recently proposed scheme for $\eps$-LDP distribution estimation is also utility-optimal for heavy hitters estimation. Our final result shows that unlike distribution estimation, without public randomness, any utility-optimal heavy hitter estimation algorithm must require $\Omega(\log n)$ bits of communication per user.

Related Material