Static Automatic Batching In TensorFlow


Ashish Agarwal ;
Proceedings of the 36th International Conference on Machine Learning, PMLR 97:92-101, 2019.


Dynamic neural networks are becoming increasingly common, and yet it is hard to implement them efficiently. On-the-fly operation batching for such models is sub-optimal and suffers from run time overheads, while writing manually batched versions can be hard and error-prone. To address this we extend TensorFlow with pfor, a parallel-for loop optimized using static loop vectorization. With pfor, users can express computation using nested loops and conditional constructs, but get performance resembling that of a manually batched version. Benchmarks demonstrate speedups of one to two orders of magnitude on range of tasks, from jacobian computation, to Graph Neural Networks.

Related Material