Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications
[edit]
Proceedings of the 36th International Conference on Machine Learning, PMLR 97:10911101, 2019.
Abstract
The von Neumann graph entropy (VNGE) facilitates measurement of information divergence and distance between graphs in a graph sequence. It has been successfully applied to various learning tasks driven by networkbased data. While effective, VNGE is computationally demanding as it requires the full eigenspectrum of the graph Laplacian matrix. In this paper, we propose a new computational framework, Fast Incremental von Neumann Graph EntRopy (FINGER), which approaches VNGE with a performance guarantee. FINGER reduces the cubic complexity of VNGE to linear complexity in the number of nodes and edges, and thus enables online computation based on incremental graph changes. We also show asymptotic equivalence of FINGER to the exact VNGE, and derive its approximation error bounds. Based on FINGER, we propose efficient algorithms for computing JensenShannon distance between graphs. Our experimental results on different random graph models demonstrate the computational efficiency and the asymptotic equivalence of FINGER. In addition, we apply FINGER to two realworld applications and one synthesized anomaly detection dataset, and corroborate its superior performance over seven baseline graph similarity methods.
Related Material


