Classifying Treatment Responders Under Causal Effect Monotonicity

[edit]

Nathan Kallus ;
Proceedings of the 36th International Conference on Machine Learning, PMLR 97:3201-3210, 2019.

Abstract

In the context of individual-level causal inference, we study the problem of predicting whether someone will respond or not to a treatment based on their features and past examples of features, treatment indicator (e.g., drug/no drug), and a binary outcome (e.g., recovery from disease). As a classification task, the problem is made difficult by not knowing the example outcomes under the opposite treatment indicators. We assume the effect is monotonic, as in advertising’s effect on a purchase or bail-setting’s effect on reappearance in court: either it would have happened regardless of treatment, not happened regardless, or happened only depending on exposure to treatment. Predicting whether the latter is latently the case is our focus. While previous work focuses on conditional average treatment effect estimation, formulating the problem as a classification task allows us to develop new tools more suited to this problem. By leveraging monotonicity, we develop new discriminative and generative algorithms for the responder-classification problem. We explore and discuss connections to corrupted data and policy learning. We provide an empirical study with both synthetic and real datasets to compare these specialized algorithms to standard benchmarks.

Related Material