Orthogonal Random Forest for Causal Inference

Miruna Oprescu, Vasilis Syrgkanis, Zhiwei Steven Wu
Proceedings of the 36th International Conference on Machine Learning, PMLR 97:4932-4941, 2019.

Abstract

We propose the orthogonal random forest, an algorithm that combines Neyman-orthogonality to reduce sensitivity with respect to estimation error of nuisance parameters with generalized random forests (Athey et al., 2017)—a flexible non-parametric method for statistical estimation of conditional moment models using random forests. We provide a consistency rate and establish asymptotic normality for our estimator. We show that under mild assumptions on the consistency rate of the nuisance estimator, we can achieve the same error rate as an oracle with a priori knowledge of these nuisance parameters. We show that when the nuisance functions have a locally sparse parametrization, then a local ell_1-penalized regression achieves the required rate. We apply our method to estimate heterogeneous treatment effects from observational data with discrete treatments or continuous treatments, and we show that, unlike prior work, our method provably allows to control for a high-dimensional set of variables under standard sparsity conditions. We also provide a comprehensive empirical evaluation of our algorithm on both synthetic and real data.

Cite this Paper


BibTeX
@InProceedings{pmlr-v97-oprescu19a, title = {Orthogonal Random Forest for Causal Inference}, author = {Oprescu, Miruna and Syrgkanis, Vasilis and Wu, Zhiwei Steven}, booktitle = {Proceedings of the 36th International Conference on Machine Learning}, pages = {4932--4941}, year = {2019}, editor = {Chaudhuri, Kamalika and Salakhutdinov, Ruslan}, volume = {97}, series = {Proceedings of Machine Learning Research}, month = {09--15 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v97/oprescu19a/oprescu19a.pdf}, url = {https://proceedings.mlr.press/v97/oprescu19a.html}, abstract = {We propose the orthogonal random forest, an algorithm that combines Neyman-orthogonality to reduce sensitivity with respect to estimation error of nuisance parameters with generalized random forests (Athey et al., 2017)—a flexible non-parametric method for statistical estimation of conditional moment models using random forests. We provide a consistency rate and establish asymptotic normality for our estimator. We show that under mild assumptions on the consistency rate of the nuisance estimator, we can achieve the same error rate as an oracle with a priori knowledge of these nuisance parameters. We show that when the nuisance functions have a locally sparse parametrization, then a local ell_1-penalized regression achieves the required rate. We apply our method to estimate heterogeneous treatment effects from observational data with discrete treatments or continuous treatments, and we show that, unlike prior work, our method provably allows to control for a high-dimensional set of variables under standard sparsity conditions. We also provide a comprehensive empirical evaluation of our algorithm on both synthetic and real data.} }
Endnote
%0 Conference Paper %T Orthogonal Random Forest for Causal Inference %A Miruna Oprescu %A Vasilis Syrgkanis %A Zhiwei Steven Wu %B Proceedings of the 36th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2019 %E Kamalika Chaudhuri %E Ruslan Salakhutdinov %F pmlr-v97-oprescu19a %I PMLR %P 4932--4941 %U https://proceedings.mlr.press/v97/oprescu19a.html %V 97 %X We propose the orthogonal random forest, an algorithm that combines Neyman-orthogonality to reduce sensitivity with respect to estimation error of nuisance parameters with generalized random forests (Athey et al., 2017)—a flexible non-parametric method for statistical estimation of conditional moment models using random forests. We provide a consistency rate and establish asymptotic normality for our estimator. We show that under mild assumptions on the consistency rate of the nuisance estimator, we can achieve the same error rate as an oracle with a priori knowledge of these nuisance parameters. We show that when the nuisance functions have a locally sparse parametrization, then a local ell_1-penalized regression achieves the required rate. We apply our method to estimate heterogeneous treatment effects from observational data with discrete treatments or continuous treatments, and we show that, unlike prior work, our method provably allows to control for a high-dimensional set of variables under standard sparsity conditions. We also provide a comprehensive empirical evaluation of our algorithm on both synthetic and real data.
APA
Oprescu, M., Syrgkanis, V. & Wu, Z.S.. (2019). Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine Learning Research 97:4932-4941 Available from https://proceedings.mlr.press/v97/oprescu19a.html.

Related Material