Computational Limitations in Robust Classification and Win-Win Results

Akshay Degwekar, Preetum Nakkiran, Vinod Vaikuntanathan
Proceedings of the Thirty-Second Conference on Learning Theory, PMLR 99:994-1028, 2019.

Abstract

We continue the study of statistical/computational tradeoffs in learning robust classifiers, following the recent work of Bubeck, Lee, Price and Razenshteyn who showed examples of classification tasks where (a) an efficient robust classifier exists, in the small-perturbation regime; (b) a non-robust classifier can be learned efficiently; but (c) it is computationally hard to learn a robust classifier, assuming the hardness of factoring large numbers. Indeed, the question of whether a robust classifier for their task exists in the large perturbation regime seems related to important open questions in computational number theory. In this work, we extend their work in three directions. First, we demonstrate classification tasks where computationally efficient robust classification is impossible, even when computationally unbounded robust classifiers exist. For this, we rely on the existence of average-case hard functions, requiring no cryptographic assumptions. Second, we show hard-to-robustly-learn classification tasks in the large-perturbation regime. Namely, we show that even though an efficient classifier that is very robust (namely, tolerant to large perturbations) exists, it is computationally hard to learn any non-trivial robust classifier. Our first construction relies on the existence of one-way functions, a minimal assumption in cryptography, and the second on the hardness of the learning parity with noise problem. In the latter setting, not only does a non-robust classifier exist, but also an efficient algorithm that generates fresh new labeled samples given access to polynomially many training examples (termed as generation by Kearns et al. (1994)). Third, we show that any such counterexample implies the existence of cryptographic primitives such as one-way functions or even forms of public-key encryption. This leads us to a win-win scenario: either we can quickly learn an efficient robust classifier, or we can construct new instances of popular and useful cryptographic primitives.

Cite this Paper


BibTeX
@InProceedings{pmlr-v99-degwekar19a, title = {Computational Limitations in Robust Classification and Win-Win Results}, author = {Degwekar, Akshay and Nakkiran, Preetum and Vaikuntanathan, Vinod}, booktitle = {Proceedings of the Thirty-Second Conference on Learning Theory}, pages = {994--1028}, year = {2019}, editor = {Beygelzimer, Alina and Hsu, Daniel}, volume = {99}, series = {Proceedings of Machine Learning Research}, month = {25--28 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v99/degwekar19a/degwekar19a.pdf}, url = {https://proceedings.mlr.press/v99/degwekar19a.html}, abstract = {We continue the study of statistical/computational tradeoffs in learning robust classifiers, following the recent work of Bubeck, Lee, Price and Razenshteyn who showed examples of classification tasks where (a) an efficient robust classifier exists, in the small-perturbation regime; (b) a non-robust classifier can be learned efficiently; but (c) it is computationally hard to learn a robust classifier, assuming the hardness of factoring large numbers. Indeed, the question of whether a robust classifier for their task exists in the large perturbation regime seems related to important open questions in computational number theory. In this work, we extend their work in three directions. First, we demonstrate classification tasks where computationally efficient robust classification is impossible, even when computationally unbounded robust classifiers exist. For this, we rely on the existence of average-case hard functions, requiring no cryptographic assumptions. Second, we show hard-to-robustly-learn classification tasks in the large-perturbation regime. Namely, we show that even though an efficient classifier that is very robust (namely, tolerant to large perturbations) exists, it is computationally hard to learn any non-trivial robust classifier. Our first construction relies on the existence of one-way functions, a minimal assumption in cryptography, and the second on the hardness of the learning parity with noise problem. In the latter setting, not only does a non-robust classifier exist, but also an efficient algorithm that generates fresh new labeled samples given access to polynomially many training examples (termed as generation by Kearns et al. (1994)). Third, we show that any such counterexample implies the existence of cryptographic primitives such as one-way functions or even forms of public-key encryption. This leads us to a win-win scenario: either we can quickly learn an efficient robust classifier, or we can construct new instances of popular and useful cryptographic primitives.} }
Endnote
%0 Conference Paper %T Computational Limitations in Robust Classification and Win-Win Results %A Akshay Degwekar %A Preetum Nakkiran %A Vinod Vaikuntanathan %B Proceedings of the Thirty-Second Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2019 %E Alina Beygelzimer %E Daniel Hsu %F pmlr-v99-degwekar19a %I PMLR %P 994--1028 %U https://proceedings.mlr.press/v99/degwekar19a.html %V 99 %X We continue the study of statistical/computational tradeoffs in learning robust classifiers, following the recent work of Bubeck, Lee, Price and Razenshteyn who showed examples of classification tasks where (a) an efficient robust classifier exists, in the small-perturbation regime; (b) a non-robust classifier can be learned efficiently; but (c) it is computationally hard to learn a robust classifier, assuming the hardness of factoring large numbers. Indeed, the question of whether a robust classifier for their task exists in the large perturbation regime seems related to important open questions in computational number theory. In this work, we extend their work in three directions. First, we demonstrate classification tasks where computationally efficient robust classification is impossible, even when computationally unbounded robust classifiers exist. For this, we rely on the existence of average-case hard functions, requiring no cryptographic assumptions. Second, we show hard-to-robustly-learn classification tasks in the large-perturbation regime. Namely, we show that even though an efficient classifier that is very robust (namely, tolerant to large perturbations) exists, it is computationally hard to learn any non-trivial robust classifier. Our first construction relies on the existence of one-way functions, a minimal assumption in cryptography, and the second on the hardness of the learning parity with noise problem. In the latter setting, not only does a non-robust classifier exist, but also an efficient algorithm that generates fresh new labeled samples given access to polynomially many training examples (termed as generation by Kearns et al. (1994)). Third, we show that any such counterexample implies the existence of cryptographic primitives such as one-way functions or even forms of public-key encryption. This leads us to a win-win scenario: either we can quickly learn an efficient robust classifier, or we can construct new instances of popular and useful cryptographic primitives.
APA
Degwekar, A., Nakkiran, P. & Vaikuntanathan, V.. (2019). Computational Limitations in Robust Classification and Win-Win Results. Proceedings of the Thirty-Second Conference on Learning Theory, in Proceedings of Machine Learning Research 99:994-1028 Available from https://proceedings.mlr.press/v99/degwekar19a.html.

Related Material