Affine Invariant Covariance Estimation for Heavy-Tailed Distributions

Dmitrii M. Ostrovskii, Alessandro Rudi
Proceedings of the Thirty-Second Conference on Learning Theory, PMLR 99:2531-2550, 2019.

Abstract

In this work we provide an estimator for the covariance matrix of a heavy-tailed multivariate distribution. We prove that the proposed estimator $\widehat{\mathbf{S}}$ admits an \textit{affine-invariant} bound of the form \[ (1-\varepsilon) \mathbf{S} \preccurlyeq \widehat{\mathbf{S}} \preccurlyeq (1+\varepsilon) \mathbf{S} \]{in} high probability, where $\mathbf{S}$ is the unknown covariance matrix, and $\preccurlyeq$ is the positive semidefinite order on symmetric matrices. The result only requires the existence of fourth-order moments, and allows for $\varepsilon = O(\sqrt{\kappa^4 d\log(d/\delta)/n})$ where $\kappa^4$ is a measure of kurtosis of the distribution, $d$ is the dimensionality of the space, $n$ is the sample size, and $1-\delta$ is the desired confidence level. More generally, we can allow for regularization with level $\lambda$, then $d$ gets replaced with the degrees of freedom number. Denoting $\text{cond}(\mathbf{S})$ the condition number of $\mathbf{S}$, the computational cost of the novel estimator is $O(d^2 n + d^3\log(\text{cond}(\mathbf{S})))$, which is comparable to the cost of the sample covariance estimator in the statistically interesing regime $n \ge d$. We consider applications of our estimator to eigenvalue estimation with relative error, and to ridge regression with heavy-tailed random design.

Cite this Paper


BibTeX
@InProceedings{pmlr-v99-ostrovskii19a, title = {Affine Invariant Covariance Estimation for Heavy-Tailed Distributions}, author = {Ostrovskii, Dmitrii M. and Rudi, Alessandro}, booktitle = {Proceedings of the Thirty-Second Conference on Learning Theory}, pages = {2531--2550}, year = {2019}, editor = {Beygelzimer, Alina and Hsu, Daniel}, volume = {99}, series = {Proceedings of Machine Learning Research}, month = {25--28 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v99/ostrovskii19a/ostrovskii19a.pdf}, url = {https://proceedings.mlr.press/v99/ostrovskii19a.html}, abstract = {In this work we provide an estimator for the covariance matrix of a heavy-tailed multivariate distribution. We prove that the proposed estimator $\widehat{\mathbf{S}}$ admits an \textit{affine-invariant} bound of the form \[ (1-\varepsilon) \mathbf{S} \preccurlyeq \widehat{\mathbf{S}} \preccurlyeq (1+\varepsilon) \mathbf{S} \]{in} high probability, where $\mathbf{S}$ is the unknown covariance matrix, and $\preccurlyeq$ is the positive semidefinite order on symmetric matrices. The result only requires the existence of fourth-order moments, and allows for $\varepsilon = O(\sqrt{\kappa^4 d\log(d/\delta)/n})$ where $\kappa^4$ is a measure of kurtosis of the distribution, $d$ is the dimensionality of the space, $n$ is the sample size, and $1-\delta$ is the desired confidence level. More generally, we can allow for regularization with level $\lambda$, then $d$ gets replaced with the degrees of freedom number. Denoting $\text{cond}(\mathbf{S})$ the condition number of $\mathbf{S}$, the computational cost of the novel estimator is $O(d^2 n + d^3\log(\text{cond}(\mathbf{S})))$, which is comparable to the cost of the sample covariance estimator in the statistically interesing regime $n \ge d$. We consider applications of our estimator to eigenvalue estimation with relative error, and to ridge regression with heavy-tailed random design.} }
Endnote
%0 Conference Paper %T Affine Invariant Covariance Estimation for Heavy-Tailed Distributions %A Dmitrii M. Ostrovskii %A Alessandro Rudi %B Proceedings of the Thirty-Second Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2019 %E Alina Beygelzimer %E Daniel Hsu %F pmlr-v99-ostrovskii19a %I PMLR %P 2531--2550 %U https://proceedings.mlr.press/v99/ostrovskii19a.html %V 99 %X In this work we provide an estimator for the covariance matrix of a heavy-tailed multivariate distribution. We prove that the proposed estimator $\widehat{\mathbf{S}}$ admits an \textit{affine-invariant} bound of the form \[ (1-\varepsilon) \mathbf{S} \preccurlyeq \widehat{\mathbf{S}} \preccurlyeq (1+\varepsilon) \mathbf{S} \]{in} high probability, where $\mathbf{S}$ is the unknown covariance matrix, and $\preccurlyeq$ is the positive semidefinite order on symmetric matrices. The result only requires the existence of fourth-order moments, and allows for $\varepsilon = O(\sqrt{\kappa^4 d\log(d/\delta)/n})$ where $\kappa^4$ is a measure of kurtosis of the distribution, $d$ is the dimensionality of the space, $n$ is the sample size, and $1-\delta$ is the desired confidence level. More generally, we can allow for regularization with level $\lambda$, then $d$ gets replaced with the degrees of freedom number. Denoting $\text{cond}(\mathbf{S})$ the condition number of $\mathbf{S}$, the computational cost of the novel estimator is $O(d^2 n + d^3\log(\text{cond}(\mathbf{S})))$, which is comparable to the cost of the sample covariance estimator in the statistically interesing regime $n \ge d$. We consider applications of our estimator to eigenvalue estimation with relative error, and to ridge regression with heavy-tailed random design.
APA
Ostrovskii, D.M. & Rudi, A.. (2019). Affine Invariant Covariance Estimation for Heavy-Tailed Distributions. Proceedings of the Thirty-Second Conference on Learning Theory, in Proceedings of Machine Learning Research 99:2531-2550 Available from https://proceedings.mlr.press/v99/ostrovskii19a.html.

Related Material