End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds

Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang Gao, Tom Ouyang, James Guo, Jiquan Ngiam, Vijay Vasudevan
Proceedings of the Conference on Robot Learning, PMLR 100:923-932, 2020.

Abstract

Recent work on 3D object detection advocates point cloud voxelization in birds-eye view, where objects preserve their physical dimensions and are naturally separable. When represented in this view, however, point clouds are sparse and have highly variable point density, which may cause detectors difficulties in detecting distant or small objects (pedestrians, traffic signs, etc.). On the other hand, perspective view provides dense observations, which could allow more favorable feature encoding for such cases. In this paper, we aim to synergize the birds-eye view and the perspective view and propose a novel end-to-end multiview fusion (MVF) algorithm, which can effectively learn to utilize the complementary information from both. Specifically, we introduce dynamic voxelization, which has four merits compared to existing voxelization methods, i) removing the need of pre-allocating a tensor with fixed size; ii) overcoming the information loss due to stochastic point/voxel dropout; iii) yielding deterministic voxel embeddings and more stable detection outcomes; iv) establishing the bi-directional relationship between points and voxels, which potentially lays a natural foundation for cross-view feature fusion. By employing dynamic voxelization, the proposed feature fusion architecture enables each point to learn to fuse context information from different views. MVF operates on points and can be naturally extended to other approaches using LiDAR point clouds. We evaluate our MVF model extensively on the newly released Waymo Open Dataset and on the KITTI dataset and demonstrate that it significantly improves detection accuracy over the comparable single-view PointPillars baseline.

Cite this Paper


BibTeX
@InProceedings{pmlr-v100-zhou20a, title = {End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds}, author = {Zhou, Yin and Sun, Pei and Zhang, Yu and Anguelov, Dragomir and Gao, Jiyang and Ouyang, Tom and Guo, James and Ngiam, Jiquan and Vasudevan, Vijay}, booktitle = {Proceedings of the Conference on Robot Learning}, pages = {923--932}, year = {2020}, editor = {Kaelbling, Leslie Pack and Kragic, Danica and Sugiura, Komei}, volume = {100}, series = {Proceedings of Machine Learning Research}, month = {30 Oct--01 Nov}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v100/zhou20a/zhou20a.pdf}, url = {https://proceedings.mlr.press/v100/zhou20a.html}, abstract = {Recent work on 3D object detection advocates point cloud voxelization in birds-eye view, where objects preserve their physical dimensions and are naturally separable. When represented in this view, however, point clouds are sparse and have highly variable point density, which may cause detectors difficulties in detecting distant or small objects (pedestrians, traffic signs, etc.). On the other hand, perspective view provides dense observations, which could allow more favorable feature encoding for such cases. In this paper, we aim to synergize the birds-eye view and the perspective view and propose a novel end-to-end multiview fusion (MVF) algorithm, which can effectively learn to utilize the complementary information from both. Specifically, we introduce dynamic voxelization, which has four merits compared to existing voxelization methods, i) removing the need of pre-allocating a tensor with fixed size; ii) overcoming the information loss due to stochastic point/voxel dropout; iii) yielding deterministic voxel embeddings and more stable detection outcomes; iv) establishing the bi-directional relationship between points and voxels, which potentially lays a natural foundation for cross-view feature fusion. By employing dynamic voxelization, the proposed feature fusion architecture enables each point to learn to fuse context information from different views. MVF operates on points and can be naturally extended to other approaches using LiDAR point clouds. We evaluate our MVF model extensively on the newly released Waymo Open Dataset and on the KITTI dataset and demonstrate that it significantly improves detection accuracy over the comparable single-view PointPillars baseline.} }
Endnote
%0 Conference Paper %T End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds %A Yin Zhou %A Pei Sun %A Yu Zhang %A Dragomir Anguelov %A Jiyang Gao %A Tom Ouyang %A James Guo %A Jiquan Ngiam %A Vijay Vasudevan %B Proceedings of the Conference on Robot Learning %C Proceedings of Machine Learning Research %D 2020 %E Leslie Pack Kaelbling %E Danica Kragic %E Komei Sugiura %F pmlr-v100-zhou20a %I PMLR %P 923--932 %U https://proceedings.mlr.press/v100/zhou20a.html %V 100 %X Recent work on 3D object detection advocates point cloud voxelization in birds-eye view, where objects preserve their physical dimensions and are naturally separable. When represented in this view, however, point clouds are sparse and have highly variable point density, which may cause detectors difficulties in detecting distant or small objects (pedestrians, traffic signs, etc.). On the other hand, perspective view provides dense observations, which could allow more favorable feature encoding for such cases. In this paper, we aim to synergize the birds-eye view and the perspective view and propose a novel end-to-end multiview fusion (MVF) algorithm, which can effectively learn to utilize the complementary information from both. Specifically, we introduce dynamic voxelization, which has four merits compared to existing voxelization methods, i) removing the need of pre-allocating a tensor with fixed size; ii) overcoming the information loss due to stochastic point/voxel dropout; iii) yielding deterministic voxel embeddings and more stable detection outcomes; iv) establishing the bi-directional relationship between points and voxels, which potentially lays a natural foundation for cross-view feature fusion. By employing dynamic voxelization, the proposed feature fusion architecture enables each point to learn to fuse context information from different views. MVF operates on points and can be naturally extended to other approaches using LiDAR point clouds. We evaluate our MVF model extensively on the newly released Waymo Open Dataset and on the KITTI dataset and demonstrate that it significantly improves detection accuracy over the comparable single-view PointPillars baseline.
APA
Zhou, Y., Sun, P., Zhang, Y., Anguelov, D., Gao, J., Ouyang, T., Guo, J., Ngiam, J. & Vasudevan, V.. (2020). End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds. Proceedings of the Conference on Robot Learning, in Proceedings of Machine Learning Research 100:923-932 Available from https://proceedings.mlr.press/v100/zhou20a.html.

Related Material