Using Contextual Information to Improve Blood Glucose Prediction

Mohammad Akbari, Rumi Chunara
Proceedings of the 4th Machine Learning for Healthcare Conference, PMLR 106:91-108, 2019.

Abstract

Blood glucose value prediction is an important task in diabetes management. While it is reported that glucose concentration is sensitive to social context such as mood, physical activity, stress, diet, alongside the influence of diabetes pathologies, we need more research on data and methodologies to incorporate and evaluate signals about such temporal context into prediction models. Person-generated data sources, such as actively contributed surveys as well as passively mined data from social media offer opportunity to capture such context, however the self-reported nature and sparsity of such data mean that such data are noisier and less specific than physiological measures such as blood glucose values themselves. Therefore, here we propose a Gaussian Process model to both address these data challenges and combine blood glucose and latent feature representations of contextual data for a novel multi-signal blood glucose prediction task. We find this approach outperforms common methods for multi-variate data, as well as using the blood glucose values in isolation. Given a robust evaluation across two blood glucose datasets with different forms of contextual information, we conclude that multi-signal Gaussian Processes can improve blood glucose prediction by using contextual information and may provide a significant shift in blood glucose prediction research and practice.

Cite this Paper


BibTeX
@InProceedings{pmlr-v106-akbari19a, title = {Using Contextual Information to Improve Blood Glucose Prediction}, author = {Akbari, Mohammad and Chunara, Rumi}, booktitle = {Proceedings of the 4th Machine Learning for Healthcare Conference}, pages = {91--108}, year = {2019}, editor = {Doshi-Velez, Finale and Fackler, Jim and Jung, Ken and Kale, David and Ranganath, Rajesh and Wallace, Byron and Wiens, Jenna}, volume = {106}, series = {Proceedings of Machine Learning Research}, month = {09--10 Aug}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v106/akbari19a/akbari19a.pdf}, url = {https://proceedings.mlr.press/v106/akbari19a.html}, abstract = {Blood glucose value prediction is an important task in diabetes management. While it is reported that glucose concentration is sensitive to social context such as mood, physical activity, stress, diet, alongside the influence of diabetes pathologies, we need more research on data and methodologies to incorporate and evaluate signals about such temporal context into prediction models. Person-generated data sources, such as actively contributed surveys as well as passively mined data from social media offer opportunity to capture such context, however the self-reported nature and sparsity of such data mean that such data are noisier and less specific than physiological measures such as blood glucose values themselves. Therefore, here we propose a Gaussian Process model to both address these data challenges and combine blood glucose and latent feature representations of contextual data for a novel multi-signal blood glucose prediction task. We find this approach outperforms common methods for multi-variate data, as well as using the blood glucose values in isolation. Given a robust evaluation across two blood glucose datasets with different forms of contextual information, we conclude that multi-signal Gaussian Processes can improve blood glucose prediction by using contextual information and may provide a significant shift in blood glucose prediction research and practice.} }
Endnote
%0 Conference Paper %T Using Contextual Information to Improve Blood Glucose Prediction %A Mohammad Akbari %A Rumi Chunara %B Proceedings of the 4th Machine Learning for Healthcare Conference %C Proceedings of Machine Learning Research %D 2019 %E Finale Doshi-Velez %E Jim Fackler %E Ken Jung %E David Kale %E Rajesh Ranganath %E Byron Wallace %E Jenna Wiens %F pmlr-v106-akbari19a %I PMLR %P 91--108 %U https://proceedings.mlr.press/v106/akbari19a.html %V 106 %X Blood glucose value prediction is an important task in diabetes management. While it is reported that glucose concentration is sensitive to social context such as mood, physical activity, stress, diet, alongside the influence of diabetes pathologies, we need more research on data and methodologies to incorporate and evaluate signals about such temporal context into prediction models. Person-generated data sources, such as actively contributed surveys as well as passively mined data from social media offer opportunity to capture such context, however the self-reported nature and sparsity of such data mean that such data are noisier and less specific than physiological measures such as blood glucose values themselves. Therefore, here we propose a Gaussian Process model to both address these data challenges and combine blood glucose and latent feature representations of contextual data for a novel multi-signal blood glucose prediction task. We find this approach outperforms common methods for multi-variate data, as well as using the blood glucose values in isolation. Given a robust evaluation across two blood glucose datasets with different forms of contextual information, we conclude that multi-signal Gaussian Processes can improve blood glucose prediction by using contextual information and may provide a significant shift in blood glucose prediction research and practice.
APA
Akbari, M. & Chunara, R.. (2019). Using Contextual Information to Improve Blood Glucose Prediction. Proceedings of the 4th Machine Learning for Healthcare Conference, in Proceedings of Machine Learning Research 106:91-108 Available from https://proceedings.mlr.press/v106/akbari19a.html.

Related Material