Statistical guarantees for local graph clustering

Wooseok Ha, Kimon Fountoulakis, Michael Mahoney
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR 108:2687-2697, 2020.

Abstract

Local graph clustering methods aim to find small clusters in very large graphs. These methods take as input a graph and a seed node, and they return as output a good cluster in a running time that depends on the size of the output cluster but that is independent of the size of the input graph. In this paper, we adopt a statistical perspective on local graph clustering, and we analyze the performance of the l1-regularized PageRank method for the recovery of a single target cluster, given a seed node inside the cluster. Assuming the target cluster has been generated by a random model, we present two results. In the first, we show that the optimal support of l1-regularized PageRank recovers the full target cluster, with bounded false positives. In the second, we show that if the seed node is connected solely to the target cluster then the optimal support of l1-regularized PageRank recovers exactly the target cluster. We also show empirically that l1-regularized PageRank has a state-of-the-art performance on many real graphs, demonstrating the superiority of the method.

Cite this Paper


BibTeX
@InProceedings{pmlr-v108-ha20a, title = {Statistical guarantees for local graph clustering}, author = {Ha, Wooseok and Fountoulakis, Kimon and Mahoney, Michael}, booktitle = {Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics}, pages = {2687--2697}, year = {2020}, editor = {Chiappa, Silvia and Calandra, Roberto}, volume = {108}, series = {Proceedings of Machine Learning Research}, month = {26--28 Aug}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v108/ha20a/ha20a.pdf}, url = {https://proceedings.mlr.press/v108/ha20a.html}, abstract = {Local graph clustering methods aim to find small clusters in very large graphs. These methods take as input a graph and a seed node, and they return as output a good cluster in a running time that depends on the size of the output cluster but that is independent of the size of the input graph. In this paper, we adopt a statistical perspective on local graph clustering, and we analyze the performance of the l1-regularized PageRank method for the recovery of a single target cluster, given a seed node inside the cluster. Assuming the target cluster has been generated by a random model, we present two results. In the first, we show that the optimal support of l1-regularized PageRank recovers the full target cluster, with bounded false positives. In the second, we show that if the seed node is connected solely to the target cluster then the optimal support of l1-regularized PageRank recovers exactly the target cluster. We also show empirically that l1-regularized PageRank has a state-of-the-art performance on many real graphs, demonstrating the superiority of the method.} }
Endnote
%0 Conference Paper %T Statistical guarantees for local graph clustering %A Wooseok Ha %A Kimon Fountoulakis %A Michael Mahoney %B Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2020 %E Silvia Chiappa %E Roberto Calandra %F pmlr-v108-ha20a %I PMLR %P 2687--2697 %U https://proceedings.mlr.press/v108/ha20a.html %V 108 %X Local graph clustering methods aim to find small clusters in very large graphs. These methods take as input a graph and a seed node, and they return as output a good cluster in a running time that depends on the size of the output cluster but that is independent of the size of the input graph. In this paper, we adopt a statistical perspective on local graph clustering, and we analyze the performance of the l1-regularized PageRank method for the recovery of a single target cluster, given a seed node inside the cluster. Assuming the target cluster has been generated by a random model, we present two results. In the first, we show that the optimal support of l1-regularized PageRank recovers the full target cluster, with bounded false positives. In the second, we show that if the seed node is connected solely to the target cluster then the optimal support of l1-regularized PageRank recovers exactly the target cluster. We also show empirically that l1-regularized PageRank has a state-of-the-art performance on many real graphs, demonstrating the superiority of the method.
APA
Ha, W., Fountoulakis, K. & Mahoney, M.. (2020). Statistical guarantees for local graph clustering. Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 108:2687-2697 Available from https://proceedings.mlr.press/v108/ha20a.html.

Related Material