Noise Contrastive Priors for Functional Uncertainty

Danijar Hafner, Dustin Tran, Timothy Lillicrap, Alex Irpan, James Davidson
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, PMLR 115:905-914, 2020.

Abstract

Obtaining reliable uncertainty estimates of neural network predictions is a long standing challenge. Bayesian neural networks have been proposed as a solution, but it remains open how to specify their prior. In particular, the common practice of an independent normal prior in weight space imposes relatively weak constraints on the function posterior, allowing it to generalize in unforeseen ways on inputs outside of the training distribution. We propose noise contrastive priors (NCPs) to obtain reliable uncertainty estimates. The key idea is to train the model to output high uncertainty for data points outside of the training distribution. NCPs do so using an input prior, which adds noise to the inputs of the current mini batch, and an output prior, which is a wide distribution given these inputs. NCPs are compatible with any model that can output uncertainty estimates, are easy to scale, and yield reliable uncertainty estimates throughout training. Empirically, we show that NCPs prevent overfitting outside of the training distribution and result in uncertainty estimates that are useful for active learning. We demonstrate the scalability of our method on the flight delays data set, where we significantly improve upon previously published results.

Cite this Paper


BibTeX
@InProceedings{pmlr-v115-hafner20a, title = {Noise Contrastive Priors for Functional Uncertainty}, author = {Hafner, Danijar and Tran, Dustin and Lillicrap, Timothy and Irpan, Alex and Davidson, James}, booktitle = {Proceedings of The 35th Uncertainty in Artificial Intelligence Conference}, pages = {905--914}, year = {2020}, editor = {Adams, Ryan P. and Gogate, Vibhav}, volume = {115}, series = {Proceedings of Machine Learning Research}, month = {22--25 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v115/hafner20a/hafner20a.pdf}, url = {https://proceedings.mlr.press/v115/hafner20a.html}, abstract = {Obtaining reliable uncertainty estimates of neural network predictions is a long standing challenge. Bayesian neural networks have been proposed as a solution, but it remains open how to specify their prior. In particular, the common practice of an independent normal prior in weight space imposes relatively weak constraints on the function posterior, allowing it to generalize in unforeseen ways on inputs outside of the training distribution. We propose noise contrastive priors (NCPs) to obtain reliable uncertainty estimates. The key idea is to train the model to output high uncertainty for data points outside of the training distribution. NCPs do so using an input prior, which adds noise to the inputs of the current mini batch, and an output prior, which is a wide distribution given these inputs. NCPs are compatible with any model that can output uncertainty estimates, are easy to scale, and yield reliable uncertainty estimates throughout training. Empirically, we show that NCPs prevent overfitting outside of the training distribution and result in uncertainty estimates that are useful for active learning. We demonstrate the scalability of our method on the flight delays data set, where we significantly improve upon previously published results.} }
Endnote
%0 Conference Paper %T Noise Contrastive Priors for Functional Uncertainty %A Danijar Hafner %A Dustin Tran %A Timothy Lillicrap %A Alex Irpan %A James Davidson %B Proceedings of The 35th Uncertainty in Artificial Intelligence Conference %C Proceedings of Machine Learning Research %D 2020 %E Ryan P. Adams %E Vibhav Gogate %F pmlr-v115-hafner20a %I PMLR %P 905--914 %U https://proceedings.mlr.press/v115/hafner20a.html %V 115 %X Obtaining reliable uncertainty estimates of neural network predictions is a long standing challenge. Bayesian neural networks have been proposed as a solution, but it remains open how to specify their prior. In particular, the common practice of an independent normal prior in weight space imposes relatively weak constraints on the function posterior, allowing it to generalize in unforeseen ways on inputs outside of the training distribution. We propose noise contrastive priors (NCPs) to obtain reliable uncertainty estimates. The key idea is to train the model to output high uncertainty for data points outside of the training distribution. NCPs do so using an input prior, which adds noise to the inputs of the current mini batch, and an output prior, which is a wide distribution given these inputs. NCPs are compatible with any model that can output uncertainty estimates, are easy to scale, and yield reliable uncertainty estimates throughout training. Empirically, we show that NCPs prevent overfitting outside of the training distribution and result in uncertainty estimates that are useful for active learning. We demonstrate the scalability of our method on the flight delays data set, where we significantly improve upon previously published results.
APA
Hafner, D., Tran, D., Lillicrap, T., Irpan, A. & Davidson, J.. (2020). Noise Contrastive Priors for Functional Uncertainty. Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, in Proceedings of Machine Learning Research 115:905-914 Available from https://proceedings.mlr.press/v115/hafner20a.html.

Related Material