Random Search and Reproducibility for Neural Architecture Search

Liam Li, Ameet Talwalkar
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, PMLR 115:367-377, 2020.

Abstract

Neural architecture search (NAS) is a promising research direction that has the potential to replace expert-designed networks with learned, task-specific architectures. In order to help ground the empirical results in this field, we propose new NAS baselines that build off the following observations: (i) NAS is a specialized hyperparameter optimization problem; and (ii) random search is a competitive baseline for hyperparameter optimization. Leveraging these observations, we evaluate both random search with early-stopping and a novel random search with weight-sharing algorithm on two standard NAS benchmarks—PTB and CIFAR-10. Our results show that random search with early-stopping is a competitive NAS baseline, e.g., it performs at least as well as ENAS, a leading NAS method, on both benchmarks. Additionally, random search with weight-sharing outperforms random search with early-stopping, achieving a state-of-the-art NAS result on PTB and a highly competitive result on CIFAR-10. Finally, we explore the existing reproducibility issues of published NAS results.

Cite this Paper


BibTeX
@InProceedings{pmlr-v115-li20c, title = {Random Search and Reproducibility for Neural Architecture Search}, author = {Li, Liam and Talwalkar, Ameet}, booktitle = {Proceedings of The 35th Uncertainty in Artificial Intelligence Conference}, pages = {367--377}, year = {2020}, editor = {Adams, Ryan P. and Gogate, Vibhav}, volume = {115}, series = {Proceedings of Machine Learning Research}, month = {22--25 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v115/li20c/li20c.pdf}, url = {https://proceedings.mlr.press/v115/li20c.html}, abstract = {Neural architecture search (NAS) is a promising research direction that has the potential to replace expert-designed networks with learned, task-specific architectures. In order to help ground the empirical results in this field, we propose new NAS baselines that build off the following observations: (i) NAS is a specialized hyperparameter optimization problem; and (ii) random search is a competitive baseline for hyperparameter optimization. Leveraging these observations, we evaluate both random search with early-stopping and a novel random search with weight-sharing algorithm on two standard NAS benchmarks—PTB and CIFAR-10. Our results show that random search with early-stopping is a competitive NAS baseline, e.g., it performs at least as well as ENAS, a leading NAS method, on both benchmarks. Additionally, random search with weight-sharing outperforms random search with early-stopping, achieving a state-of-the-art NAS result on PTB and a highly competitive result on CIFAR-10. Finally, we explore the existing reproducibility issues of published NAS results.} }
Endnote
%0 Conference Paper %T Random Search and Reproducibility for Neural Architecture Search %A Liam Li %A Ameet Talwalkar %B Proceedings of The 35th Uncertainty in Artificial Intelligence Conference %C Proceedings of Machine Learning Research %D 2020 %E Ryan P. Adams %E Vibhav Gogate %F pmlr-v115-li20c %I PMLR %P 367--377 %U https://proceedings.mlr.press/v115/li20c.html %V 115 %X Neural architecture search (NAS) is a promising research direction that has the potential to replace expert-designed networks with learned, task-specific architectures. In order to help ground the empirical results in this field, we propose new NAS baselines that build off the following observations: (i) NAS is a specialized hyperparameter optimization problem; and (ii) random search is a competitive baseline for hyperparameter optimization. Leveraging these observations, we evaluate both random search with early-stopping and a novel random search with weight-sharing algorithm on two standard NAS benchmarks—PTB and CIFAR-10. Our results show that random search with early-stopping is a competitive NAS baseline, e.g., it performs at least as well as ENAS, a leading NAS method, on both benchmarks. Additionally, random search with weight-sharing outperforms random search with early-stopping, achieving a state-of-the-art NAS result on PTB and a highly competitive result on CIFAR-10. Finally, we explore the existing reproducibility issues of published NAS results.
APA
Li, L. & Talwalkar, A.. (2020). Random Search and Reproducibility for Neural Architecture Search. Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, in Proceedings of Machine Learning Research 115:367-377 Available from https://proceedings.mlr.press/v115/li20c.html.

Related Material