[edit]
First-Order Bayesian Regret Analysis of Thompson Sampling
Proceedings of the 31st International Conference on Algorithmic Learning Theory, PMLR 117:196-233, 2020.
Abstract
We address online combinatorial optimization when the player has a prior over the adversary’s sequence of losses. In this setting, Russo and Van Roy proposed an information-theoretic analysis of Thompson Sampling based on the information ratio, allowing for elegant proofs of Bayesian regret bounds. In this paper we introduce three novel ideas to this line of work. First we propose a new quantity, the scale-sensitive information ratio, which allows us to obtain more refined first-order regret bounds (i.e., bounds of the form $O(\sqrt{L^*})$ where $L^*$ is the loss of the best combinatorial action). Second we replace the entropy over combinatorial actions by a coordinate entropy, which allows us to obtain the first optimal worst-case bound for Thompson Sampling in the combinatorial setting. We additionally introduce a novel link between Bayesian agents and frequentist confidence intervals. Combining these ideas we show that the classical multi-armed bandit first-order regret bound $\tilde{O}(\sqrt{d L^*})$ still holds true in the more challenging and more general semi-bandit scenario. This latter result improves the previous state of the art bound $\tilde{O}(\sqrt{(d+m^3)L^*})$ by Lykouris, Sridharan and Tardos. We tighten these results by leveraging a recent insight of Zimmert and Lattimore connecting Thompson Sampling and online stochastic mirror descent, which allows us to replace the Shannon entropy with more general mirror maps.