[edit]
When are Non-Parametric Methods Robust?
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:832-841, 2020.
Abstract
A growing body of research has shown that many classifiers are susceptible to adversarial examples – small strategic modifications to test inputs that lead to misclassification. In this work, we study general non-parametric methods, with a view towards understanding when they are robust to these modifications. We establish general conditions under which non-parametric methods are r-consistent – in the sense that they converge to optimally robust and accurate classifiers in the large sample limit. Concretely, our results show that when data is well-separated, nearest neighbors and kernel classifiers are r-consistent, while histograms are not. For general data distributions, we prove that preprocessing by Adversarial Pruning (Yang et. al., 2019)– that makes data well-separated – followed by nearest neighbors or kernel classifiers also leads to r-consistency.