Accelerated Stochastic Gradient-free and Projection-free Methods

Feihu Huang, Lue Tao, Songcan Chen
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:4519-4530, 2020.

Abstract

In the paper, we propose a class of accelerated stochastic gradient-free and projection-free (a.k.a., zeroth-order Frank-Wolfe) methods to solve the constrained stochastic and finite-sum nonconvex optimization. Specifically, we propose an accelerated stochastic zeroth-order Frank-Wolfe (Acc-SZOFW) method based on the variance reduced technique of SPIDER/SpiderBoost and a novel momentum accelerated technique. Moreover, under some mild conditions, we prove that the Acc-SZOFW has the function query complexity of $O(d\sqrt{n}\epsilon^{-2})$ for finding an $\epsilon$-stationary point in the finite-sum problem, which improves the exiting best result by a factor of $O(\sqrt{n}\epsilon^{-2})$, and has the function query complexity of $O(d\epsilon^{-3})$ in the stochastic problem, which improves the exiting best result by a factor of $O(\epsilon^{-1})$. To relax the large batches required in the Acc-SZOFW, we further propose a novel accelerated stochastic zeroth-order Frank-Wolfe (Acc-SZOFW*) based on a new variance reduced technique of STORM, which still reaches the function query complexity of $O(d\epsilon^{-3})$ in the stochastic problem without relying on any large batches. In particular, we present an accelerated framework of the Frank-Wolfe methods based on the proposed momentum accelerated technique. The extensive experimental results on black-box adversarial attack and robust black-box classification demonstrate the efficiency of our algorithms.

Cite this Paper


BibTeX
@InProceedings{pmlr-v119-huang20j, title = {Accelerated Stochastic Gradient-free and Projection-free Methods}, author = {Huang, Feihu and Tao, Lue and Chen, Songcan}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, pages = {4519--4530}, year = {2020}, editor = {III, Hal Daumé and Singh, Aarti}, volume = {119}, series = {Proceedings of Machine Learning Research}, month = {13--18 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v119/huang20j/huang20j.pdf}, url = {http://proceedings.mlr.press/v119/huang20j.html}, abstract = {In the paper, we propose a class of accelerated stochastic gradient-free and projection-free (a.k.a., zeroth-order Frank-Wolfe) methods to solve the constrained stochastic and finite-sum nonconvex optimization. Specifically, we propose an accelerated stochastic zeroth-order Frank-Wolfe (Acc-SZOFW) method based on the variance reduced technique of SPIDER/SpiderBoost and a novel momentum accelerated technique. Moreover, under some mild conditions, we prove that the Acc-SZOFW has the function query complexity of $O(d\sqrt{n}\epsilon^{-2})$ for finding an $\epsilon$-stationary point in the finite-sum problem, which improves the exiting best result by a factor of $O(\sqrt{n}\epsilon^{-2})$, and has the function query complexity of $O(d\epsilon^{-3})$ in the stochastic problem, which improves the exiting best result by a factor of $O(\epsilon^{-1})$. To relax the large batches required in the Acc-SZOFW, we further propose a novel accelerated stochastic zeroth-order Frank-Wolfe (Acc-SZOFW*) based on a new variance reduced technique of STORM, which still reaches the function query complexity of $O(d\epsilon^{-3})$ in the stochastic problem without relying on any large batches. In particular, we present an accelerated framework of the Frank-Wolfe methods based on the proposed momentum accelerated technique. The extensive experimental results on black-box adversarial attack and robust black-box classification demonstrate the efficiency of our algorithms.} }
Endnote
%0 Conference Paper %T Accelerated Stochastic Gradient-free and Projection-free Methods %A Feihu Huang %A Lue Tao %A Songcan Chen %B Proceedings of the 37th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2020 %E Hal Daumé III %E Aarti Singh %F pmlr-v119-huang20j %I PMLR %P 4519--4530 %U http://proceedings.mlr.press/v119/huang20j.html %V 119 %X In the paper, we propose a class of accelerated stochastic gradient-free and projection-free (a.k.a., zeroth-order Frank-Wolfe) methods to solve the constrained stochastic and finite-sum nonconvex optimization. Specifically, we propose an accelerated stochastic zeroth-order Frank-Wolfe (Acc-SZOFW) method based on the variance reduced technique of SPIDER/SpiderBoost and a novel momentum accelerated technique. Moreover, under some mild conditions, we prove that the Acc-SZOFW has the function query complexity of $O(d\sqrt{n}\epsilon^{-2})$ for finding an $\epsilon$-stationary point in the finite-sum problem, which improves the exiting best result by a factor of $O(\sqrt{n}\epsilon^{-2})$, and has the function query complexity of $O(d\epsilon^{-3})$ in the stochastic problem, which improves the exiting best result by a factor of $O(\epsilon^{-1})$. To relax the large batches required in the Acc-SZOFW, we further propose a novel accelerated stochastic zeroth-order Frank-Wolfe (Acc-SZOFW*) based on a new variance reduced technique of STORM, which still reaches the function query complexity of $O(d\epsilon^{-3})$ in the stochastic problem without relying on any large batches. In particular, we present an accelerated framework of the Frank-Wolfe methods based on the proposed momentum accelerated technique. The extensive experimental results on black-box adversarial attack and robust black-box classification demonstrate the efficiency of our algorithms.
APA
Huang, F., Tao, L. & Chen, S.. (2020). Accelerated Stochastic Gradient-free and Projection-free Methods. Proceedings of the 37th International Conference on Machine Learning, in Proceedings of Machine Learning Research 119:4519-4530 Available from http://proceedings.mlr.press/v119/huang20j.html.

Related Material