Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization

Zhize Li, Dmitry Kovalev, Xun Qian, Peter Richtarik
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:5895-5904, 2020.

Abstract

Due to the high communication cost in distributed and federated learning problems, methods relying on compression of communicated messages are becoming increasingly popular. While in other contexts the best performing gradient-type methods invariably rely on some form of acceleration/momentum to reduce the number of iterations, there are no methods which combine the benefits of both gradient compression and acceleration. In this paper, we remedy this situation and propose the first \emph{accelerated compressed gradient descent (ACGD)} methods. In the single machine regime, we prove that ACGD enjoys the rate $O\Big((1+\omega)\sqrt{\frac{L}{\mu}}\log \frac{1}{\epsilon}\Big)$ for $\mu$-strongly convex problems and $O\Big((1+\omega)\sqrt{\frac{L}{\epsilon}}\Big)$ for convex problems, respectively, where $\omega$ is the compression parameter. Our results improve upon the existing non-accelerated rates $O\Big((1+\omega)\frac{L}{\mu}\log \frac{1}{\epsilon}\Big)$ and $O\Big((1+\omega)\frac{L}{\epsilon}\Big)$, respectively, and recover the optimal rates of accelerated gradient descent as a special case when no compression ($\omega=0$) is applied. We further propose a distributed variant of ACGD (called ADIANA) and prove the convergence rate $\widetilde{O}\Big(\omega+\sqrt{\frac{L}{\mu}}+\sqrt{\big(\frac{\omega}{n}+\sqrt{\frac{\omega}{n}}\big)\frac{\omega L}{\mu}}\Big)$, where $n$ is the number of devices/workers and $\widetilde{O}$ hides the logarithmic factor $\log \frac{1}{\epsilon}$. This improves upon the previous best result $\widetilde{O}\Big(\omega + \frac{L}{\mu}+\frac{\omega L}{n\mu} \Big)$ achieved by the DIANA method of Mishchenko et al. (2019). Finally, we conduct several experiments on real-world datasets which corroborate our theoretical results and confirm the practical superiority of our accelerated methods.

Cite this Paper


BibTeX
@InProceedings{pmlr-v119-li20g, title = {Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization}, author = {Li, Zhize and Kovalev, Dmitry and Qian, Xun and Richtarik, Peter}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, pages = {5895--5904}, year = {2020}, editor = {III, Hal Daumé and Singh, Aarti}, volume = {119}, series = {Proceedings of Machine Learning Research}, month = {13--18 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v119/li20g/li20g.pdf}, url = {http://proceedings.mlr.press/v119/li20g.html}, abstract = {Due to the high communication cost in distributed and federated learning problems, methods relying on compression of communicated messages are becoming increasingly popular. While in other contexts the best performing gradient-type methods invariably rely on some form of acceleration/momentum to reduce the number of iterations, there are no methods which combine the benefits of both gradient compression and acceleration. In this paper, we remedy this situation and propose the first \emph{accelerated compressed gradient descent (ACGD)} methods. In the single machine regime, we prove that ACGD enjoys the rate $O\Big((1+\omega)\sqrt{\frac{L}{\mu}}\log \frac{1}{\epsilon}\Big)$ for $\mu$-strongly convex problems and $O\Big((1+\omega)\sqrt{\frac{L}{\epsilon}}\Big)$ for convex problems, respectively, where $\omega$ is the compression parameter. Our results improve upon the existing non-accelerated rates $O\Big((1+\omega)\frac{L}{\mu}\log \frac{1}{\epsilon}\Big)$ and $O\Big((1+\omega)\frac{L}{\epsilon}\Big)$, respectively, and recover the optimal rates of accelerated gradient descent as a special case when no compression ($\omega=0$) is applied. We further propose a distributed variant of ACGD (called ADIANA) and prove the convergence rate $\widetilde{O}\Big(\omega+\sqrt{\frac{L}{\mu}}+\sqrt{\big(\frac{\omega}{n}+\sqrt{\frac{\omega}{n}}\big)\frac{\omega L}{\mu}}\Big)$, where $n$ is the number of devices/workers and $\widetilde{O}$ hides the logarithmic factor $\log \frac{1}{\epsilon}$. This improves upon the previous best result $\widetilde{O}\Big(\omega + \frac{L}{\mu}+\frac{\omega L}{n\mu} \Big)$ achieved by the DIANA method of Mishchenko et al. (2019). Finally, we conduct several experiments on real-world datasets which corroborate our theoretical results and confirm the practical superiority of our accelerated methods.} }
Endnote
%0 Conference Paper %T Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization %A Zhize Li %A Dmitry Kovalev %A Xun Qian %A Peter Richtarik %B Proceedings of the 37th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2020 %E Hal Daumé III %E Aarti Singh %F pmlr-v119-li20g %I PMLR %P 5895--5904 %U http://proceedings.mlr.press/v119/li20g.html %V 119 %X Due to the high communication cost in distributed and federated learning problems, methods relying on compression of communicated messages are becoming increasingly popular. While in other contexts the best performing gradient-type methods invariably rely on some form of acceleration/momentum to reduce the number of iterations, there are no methods which combine the benefits of both gradient compression and acceleration. In this paper, we remedy this situation and propose the first \emph{accelerated compressed gradient descent (ACGD)} methods. In the single machine regime, we prove that ACGD enjoys the rate $O\Big((1+\omega)\sqrt{\frac{L}{\mu}}\log \frac{1}{\epsilon}\Big)$ for $\mu$-strongly convex problems and $O\Big((1+\omega)\sqrt{\frac{L}{\epsilon}}\Big)$ for convex problems, respectively, where $\omega$ is the compression parameter. Our results improve upon the existing non-accelerated rates $O\Big((1+\omega)\frac{L}{\mu}\log \frac{1}{\epsilon}\Big)$ and $O\Big((1+\omega)\frac{L}{\epsilon}\Big)$, respectively, and recover the optimal rates of accelerated gradient descent as a special case when no compression ($\omega=0$) is applied. We further propose a distributed variant of ACGD (called ADIANA) and prove the convergence rate $\widetilde{O}\Big(\omega+\sqrt{\frac{L}{\mu}}+\sqrt{\big(\frac{\omega}{n}+\sqrt{\frac{\omega}{n}}\big)\frac{\omega L}{\mu}}\Big)$, where $n$ is the number of devices/workers and $\widetilde{O}$ hides the logarithmic factor $\log \frac{1}{\epsilon}$. This improves upon the previous best result $\widetilde{O}\Big(\omega + \frac{L}{\mu}+\frac{\omega L}{n\mu} \Big)$ achieved by the DIANA method of Mishchenko et al. (2019). Finally, we conduct several experiments on real-world datasets which corroborate our theoretical results and confirm the practical superiority of our accelerated methods.
APA
Li, Z., Kovalev, D., Qian, X. & Richtarik, P.. (2020). Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization. Proceedings of the 37th International Conference on Machine Learning, in Proceedings of Machine Learning Research 119:5895-5904 Available from http://proceedings.mlr.press/v119/li20g.html.

Related Material