Bounding the fairness and accuracy of classifiers from population statistics

Sivan Sabato, Elad Yom-Tov
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:8316-8325, 2020.

Abstract

We consider the study of a classification model whose properties are impossible to estimate using a validation set, either due to the absence of such a set or because access to the classifier, even as a black-box, is impossible. Instead, only aggregate statistics on the rate of positive predictions in each of several sub-populations are available, as well as the true rates of positive labels in each of these sub-populations. We show that these aggregate statistics can be used to lower-bound the discrepancy of a classifier, which is a measure that balances inaccuracy and unfairness. To this end, we define a new measure of unfairness, equal to the fraction of the population on which the classifier behaves differently, compared to its global, ideally fair behavior, as defined by the measure of equalized odds. We propose an efficient and practical procedure for finding the best possible lower bound on the discrepancy of the classifier, given the aggregate statistics, and demonstrate in experiments the empirical tightness of this lower bound, as well as its possible uses on various types of problems, ranging from estimating the quality of voting polls to measuring the effectiveness of patient identification from internet search queries. The code and data are available at https://github.com/sivansabato/bfa.

Cite this Paper


BibTeX
@InProceedings{pmlr-v119-sabato20a, title = {Bounding the fairness and accuracy of classifiers from population statistics}, author = {Sabato, Sivan and Yom-Tov, Elad}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, pages = {8316--8325}, year = {2020}, editor = {III, Hal Daumé and Singh, Aarti}, volume = {119}, series = {Proceedings of Machine Learning Research}, month = {13--18 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v119/sabato20a/sabato20a.pdf}, url = {https://proceedings.mlr.press/v119/sabato20a.html}, abstract = {We consider the study of a classification model whose properties are impossible to estimate using a validation set, either due to the absence of such a set or because access to the classifier, even as a black-box, is impossible. Instead, only aggregate statistics on the rate of positive predictions in each of several sub-populations are available, as well as the true rates of positive labels in each of these sub-populations. We show that these aggregate statistics can be used to lower-bound the discrepancy of a classifier, which is a measure that balances inaccuracy and unfairness. To this end, we define a new measure of unfairness, equal to the fraction of the population on which the classifier behaves differently, compared to its global, ideally fair behavior, as defined by the measure of equalized odds. We propose an efficient and practical procedure for finding the best possible lower bound on the discrepancy of the classifier, given the aggregate statistics, and demonstrate in experiments the empirical tightness of this lower bound, as well as its possible uses on various types of problems, ranging from estimating the quality of voting polls to measuring the effectiveness of patient identification from internet search queries. The code and data are available at https://github.com/sivansabato/bfa.} }
Endnote
%0 Conference Paper %T Bounding the fairness and accuracy of classifiers from population statistics %A Sivan Sabato %A Elad Yom-Tov %B Proceedings of the 37th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2020 %E Hal Daumé III %E Aarti Singh %F pmlr-v119-sabato20a %I PMLR %P 8316--8325 %U https://proceedings.mlr.press/v119/sabato20a.html %V 119 %X We consider the study of a classification model whose properties are impossible to estimate using a validation set, either due to the absence of such a set or because access to the classifier, even as a black-box, is impossible. Instead, only aggregate statistics on the rate of positive predictions in each of several sub-populations are available, as well as the true rates of positive labels in each of these sub-populations. We show that these aggregate statistics can be used to lower-bound the discrepancy of a classifier, which is a measure that balances inaccuracy and unfairness. To this end, we define a new measure of unfairness, equal to the fraction of the population on which the classifier behaves differently, compared to its global, ideally fair behavior, as defined by the measure of equalized odds. We propose an efficient and practical procedure for finding the best possible lower bound on the discrepancy of the classifier, given the aggregate statistics, and demonstrate in experiments the empirical tightness of this lower bound, as well as its possible uses on various types of problems, ranging from estimating the quality of voting polls to measuring the effectiveness of patient identification from internet search queries. The code and data are available at https://github.com/sivansabato/bfa.
APA
Sabato, S. & Yom-Tov, E.. (2020). Bounding the fairness and accuracy of classifiers from population statistics. Proceedings of the 37th International Conference on Machine Learning, in Proceedings of Machine Learning Research 119:8316-8325 Available from https://proceedings.mlr.press/v119/sabato20a.html.

Related Material