Logistic Regression for Massive Data with Rare Events

Haiying Wang
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:9829-9836, 2020.

Abstract

This paper studies binary logistic regression for rare events data, or imbalanced data, where the number of events (observations in one class, often called cases) is significantly smaller than the number of nonevents (observations in the other class, often called controls). We first derive the asymptotic distribution of the maximum likelihood estimator (MLE) of the unknown parameter, which shows that the asymptotic variance convergences to zero in a rate of the inverse of the number of the events instead of the inverse of the full data sample size, indicating that the available information in rare events data is at the scale of the number of events instead of the full data sample size. Furthermore, we prove that under-sampling a small proportion of the nonevents, the resulting under-sampled estimator may have identical asymptotic distribution to the full data MLE. This demonstrates the advantage of under-sampling nonevents for rare events data, because this procedure may significantly reduce the computation and/or data collection costs. Another common practice in analyzing rare events data is to over-sample (replicate) the events, which has a higher computational cost. We show that this procedure may even result in efficiency loss in terms of parameter estimation.

Cite this Paper


BibTeX
@InProceedings{pmlr-v119-wang20a, title = {Logistic Regression for Massive Data with Rare Events}, author = {Wang, Haiying}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, pages = {9829--9836}, year = {2020}, editor = {III, Hal Daumé and Singh, Aarti}, volume = {119}, series = {Proceedings of Machine Learning Research}, month = {13--18 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v119/wang20a/wang20a.pdf}, url = {https://proceedings.mlr.press/v119/wang20a.html}, abstract = {This paper studies binary logistic regression for rare events data, or imbalanced data, where the number of events (observations in one class, often called cases) is significantly smaller than the number of nonevents (observations in the other class, often called controls). We first derive the asymptotic distribution of the maximum likelihood estimator (MLE) of the unknown parameter, which shows that the asymptotic variance convergences to zero in a rate of the inverse of the number of the events instead of the inverse of the full data sample size, indicating that the available information in rare events data is at the scale of the number of events instead of the full data sample size. Furthermore, we prove that under-sampling a small proportion of the nonevents, the resulting under-sampled estimator may have identical asymptotic distribution to the full data MLE. This demonstrates the advantage of under-sampling nonevents for rare events data, because this procedure may significantly reduce the computation and/or data collection costs. Another common practice in analyzing rare events data is to over-sample (replicate) the events, which has a higher computational cost. We show that this procedure may even result in efficiency loss in terms of parameter estimation.} }
Endnote
%0 Conference Paper %T Logistic Regression for Massive Data with Rare Events %A Haiying Wang %B Proceedings of the 37th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2020 %E Hal Daumé III %E Aarti Singh %F pmlr-v119-wang20a %I PMLR %P 9829--9836 %U https://proceedings.mlr.press/v119/wang20a.html %V 119 %X This paper studies binary logistic regression for rare events data, or imbalanced data, where the number of events (observations in one class, often called cases) is significantly smaller than the number of nonevents (observations in the other class, often called controls). We first derive the asymptotic distribution of the maximum likelihood estimator (MLE) of the unknown parameter, which shows that the asymptotic variance convergences to zero in a rate of the inverse of the number of the events instead of the inverse of the full data sample size, indicating that the available information in rare events data is at the scale of the number of events instead of the full data sample size. Furthermore, we prove that under-sampling a small proportion of the nonevents, the resulting under-sampled estimator may have identical asymptotic distribution to the full data MLE. This demonstrates the advantage of under-sampling nonevents for rare events data, because this procedure may significantly reduce the computation and/or data collection costs. Another common practice in analyzing rare events data is to over-sample (replicate) the events, which has a higher computational cost. We show that this procedure may even result in efficiency loss in terms of parameter estimation.
APA
Wang, H.. (2020). Logistic Regression for Massive Data with Rare Events. Proceedings of the 37th International Conference on Machine Learning, in Proceedings of Machine Learning Research 119:9829-9836 Available from https://proceedings.mlr.press/v119/wang20a.html.

Related Material