Regret Bounds for Decentralized Learning in Cooperative Multi-Agent Dynamical Systems

Seyed Mohammad Asghari, Yi Ouyang, Ashutosh Nayyar
Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), PMLR 124:121-130, 2020.

Abstract

Regret analysis is challenging in Multi-Agent Reinforcement Learning (MARL) primarily due to the dynamical environments and the decentralized information among agents. We attempt to solve this challenge in the context of decentralized learning in multi-agent linear-quadratic (LQ) dynamical systems. We begin with a simple setup consisting of two agents and two dynamically decoupled stochastic linear systems, each system controlled by an agent. The systems are coupled through a quadratic cost function. When both systems’ dynamics are unknown and there is no communication among the agents, we show that no learning policy can generate sub-linear in $T$ regret, where $T$ is the time horizon. When only one system’s dynamics are unknown and there is one-directional communication from the agent controlling the unknown system to the other agent, we propose a MARL algorithm based on the construction of an auxiliary single-agent LQ problem. The auxiliary single-agent problem in the proposed MARL algorithm serves as an implicit coordination mechanism among the two learning agents. This allows the agents to achieve a regret within $O(\sqrt{T})$ of the regret of the auxiliary single-agent problem. Consequently, using existing results for single-agent LQ regret, our algorithm provides a $\tilde{O}(\sqrt{T})$ regret bound. (Here $\tilde{O}(\cdot)$ hides constants and logarithmic factors). Our numerical experiments indicate that this bound is matched in practice. From the two-agent problem, we extend our results to multi-agent LQ systems with certain communication patterns which appear in vehicle platoon control.

Cite this Paper


BibTeX
@InProceedings{pmlr-v124-mohammad-asghari20a, title = {Regret Bounds for Decentralized Learning in Cooperative Multi-Agent Dynamical Systems}, author = {Mohammad Asghari, Seyed and Ouyang, Yi and Nayyar, Ashutosh}, booktitle = {Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI)}, pages = {121--130}, year = {2020}, editor = {Peters, Jonas and Sontag, David}, volume = {124}, series = {Proceedings of Machine Learning Research}, month = {03--06 Aug}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v124/mohammad-asghari20a/mohammad-asghari20a.pdf}, url = {https://proceedings.mlr.press/v124/mohammad-asghari20a.html}, abstract = {Regret analysis is challenging in Multi-Agent Reinforcement Learning (MARL) primarily due to the dynamical environments and the decentralized information among agents. We attempt to solve this challenge in the context of decentralized learning in multi-agent linear-quadratic (LQ) dynamical systems. We begin with a simple setup consisting of two agents and two dynamically decoupled stochastic linear systems, each system controlled by an agent. The systems are coupled through a quadratic cost function. When both systems’ dynamics are unknown and there is no communication among the agents, we show that no learning policy can generate sub-linear in $T$ regret, where $T$ is the time horizon. When only one system’s dynamics are unknown and there is one-directional communication from the agent controlling the unknown system to the other agent, we propose a MARL algorithm based on the construction of an auxiliary single-agent LQ problem. The auxiliary single-agent problem in the proposed MARL algorithm serves as an implicit coordination mechanism among the two learning agents. This allows the agents to achieve a regret within $O(\sqrt{T})$ of the regret of the auxiliary single-agent problem. Consequently, using existing results for single-agent LQ regret, our algorithm provides a $\tilde{O}(\sqrt{T})$ regret bound. (Here $\tilde{O}(\cdot)$ hides constants and logarithmic factors). Our numerical experiments indicate that this bound is matched in practice. From the two-agent problem, we extend our results to multi-agent LQ systems with certain communication patterns which appear in vehicle platoon control.} }
Endnote
%0 Conference Paper %T Regret Bounds for Decentralized Learning in Cooperative Multi-Agent Dynamical Systems %A Seyed Mohammad Asghari %A Yi Ouyang %A Ashutosh Nayyar %B Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI) %C Proceedings of Machine Learning Research %D 2020 %E Jonas Peters %E David Sontag %F pmlr-v124-mohammad-asghari20a %I PMLR %P 121--130 %U https://proceedings.mlr.press/v124/mohammad-asghari20a.html %V 124 %X Regret analysis is challenging in Multi-Agent Reinforcement Learning (MARL) primarily due to the dynamical environments and the decentralized information among agents. We attempt to solve this challenge in the context of decentralized learning in multi-agent linear-quadratic (LQ) dynamical systems. We begin with a simple setup consisting of two agents and two dynamically decoupled stochastic linear systems, each system controlled by an agent. The systems are coupled through a quadratic cost function. When both systems’ dynamics are unknown and there is no communication among the agents, we show that no learning policy can generate sub-linear in $T$ regret, where $T$ is the time horizon. When only one system’s dynamics are unknown and there is one-directional communication from the agent controlling the unknown system to the other agent, we propose a MARL algorithm based on the construction of an auxiliary single-agent LQ problem. The auxiliary single-agent problem in the proposed MARL algorithm serves as an implicit coordination mechanism among the two learning agents. This allows the agents to achieve a regret within $O(\sqrt{T})$ of the regret of the auxiliary single-agent problem. Consequently, using existing results for single-agent LQ regret, our algorithm provides a $\tilde{O}(\sqrt{T})$ regret bound. (Here $\tilde{O}(\cdot)$ hides constants and logarithmic factors). Our numerical experiments indicate that this bound is matched in practice. From the two-agent problem, we extend our results to multi-agent LQ systems with certain communication patterns which appear in vehicle platoon control.
APA
Mohammad Asghari, S., Ouyang, Y. & Nayyar, A.. (2020). Regret Bounds for Decentralized Learning in Cooperative Multi-Agent Dynamical Systems. Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), in Proceedings of Machine Learning Research 124:121-130 Available from https://proceedings.mlr.press/v124/mohammad-asghari20a.html.

Related Material