Locally Private Hypothesis Selection

Sivakanth Gopi, Gautam Kamath, Janardhan Kulkarni, Aleksandar Nikolov, Zhiwei Steven Wu, Huanyu Zhang
Proceedings of Thirty Third Conference on Learning Theory, PMLR 125:1785-1816, 2020.

Abstract

We initiate the study of hypothesis selection under local differential privacy. Given samples from an unknown probability distribution $p$ and a set of $k$ probability distributions $\mathcal{Q}$, we aim to output, under the constraints of $\varepsilon$-differential privacy, a distribution from $\mathcal{Q}$ whose total variation distance to $p$ is comparable to the best such distribution. This is a generalization of the classic problem of $k$-wise simple hypothesis testing, which corresponds to when $p \in \mathcal{Q}$, and we wish to identify $p$. Absent privacy constraints, this problem requires $O(\log k)$ samples from $p$, and it was recently shown that the same complexity is achievable under (central) differential privacy. However, the naive approach to this problem under local differential privacy would require $\tilde O(k^2)$ samples. We first show that the constraint of local differential privacy incurs an exponential increase in cost: any algorithm for this problem requires at least $\Omega(k)$ samples. Second, for the special case of $k$-wise simple hypothesis testing, we provide a non-interactive algorithm which nearly matches this bound, requiring $\tilde O(k)$ samples. Finally, we provide sequentially interactive algorithms for the general case, requiring $\tilde O(k)$ samples and only $O(\log \log k)$ rounds of interactivity. Our algorithms are achieved through a reduction to maximum selection with adversarial comparators, a problem of independent interest for which we initiate study in the parallel setting. For this problem, we provide a family of algorithms for each number of allowed rounds of interaction $t$, as well as lower bounds showing that they are near-optimal for every $t$. Notably, our algorithms result in exponential improvements on the round complexity of previous methods.

Cite this Paper


BibTeX
@InProceedings{pmlr-v125-gopi20a, title = {Locally Private Hypothesis Selection}, author = {Gopi, Sivakanth and Kamath, Gautam and Kulkarni, Janardhan and Nikolov, Aleksandar and Wu, Zhiwei Steven and Zhang, Huanyu}, booktitle = {Proceedings of Thirty Third Conference on Learning Theory}, pages = {1785--1816}, year = {2020}, editor = {Abernethy, Jacob and Agarwal, Shivani}, volume = {125}, series = {Proceedings of Machine Learning Research}, month = {09--12 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v125/gopi20a/gopi20a.pdf}, url = {https://proceedings.mlr.press/v125/gopi20a.html}, abstract = { We initiate the study of hypothesis selection under local differential privacy. Given samples from an unknown probability distribution $p$ and a set of $k$ probability distributions $\mathcal{Q}$, we aim to output, under the constraints of $\varepsilon$-differential privacy, a distribution from $\mathcal{Q}$ whose total variation distance to $p$ is comparable to the best such distribution. This is a generalization of the classic problem of $k$-wise simple hypothesis testing, which corresponds to when $p \in \mathcal{Q}$, and we wish to identify $p$. Absent privacy constraints, this problem requires $O(\log k)$ samples from $p$, and it was recently shown that the same complexity is achievable under (central) differential privacy. However, the naive approach to this problem under local differential privacy would require $\tilde O(k^2)$ samples. We first show that the constraint of local differential privacy incurs an exponential increase in cost: any algorithm for this problem requires at least $\Omega(k)$ samples. Second, for the special case of $k$-wise simple hypothesis testing, we provide a non-interactive algorithm which nearly matches this bound, requiring $\tilde O(k)$ samples. Finally, we provide sequentially interactive algorithms for the general case, requiring $\tilde O(k)$ samples and only $O(\log \log k)$ rounds of interactivity. Our algorithms are achieved through a reduction to maximum selection with adversarial comparators, a problem of independent interest for which we initiate study in the parallel setting. For this problem, we provide a family of algorithms for each number of allowed rounds of interaction $t$, as well as lower bounds showing that they are near-optimal for every $t$. Notably, our algorithms result in exponential improvements on the round complexity of previous methods.} }
Endnote
%0 Conference Paper %T Locally Private Hypothesis Selection %A Sivakanth Gopi %A Gautam Kamath %A Janardhan Kulkarni %A Aleksandar Nikolov %A Zhiwei Steven Wu %A Huanyu Zhang %B Proceedings of Thirty Third Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2020 %E Jacob Abernethy %E Shivani Agarwal %F pmlr-v125-gopi20a %I PMLR %P 1785--1816 %U https://proceedings.mlr.press/v125/gopi20a.html %V 125 %X We initiate the study of hypothesis selection under local differential privacy. Given samples from an unknown probability distribution $p$ and a set of $k$ probability distributions $\mathcal{Q}$, we aim to output, under the constraints of $\varepsilon$-differential privacy, a distribution from $\mathcal{Q}$ whose total variation distance to $p$ is comparable to the best such distribution. This is a generalization of the classic problem of $k$-wise simple hypothesis testing, which corresponds to when $p \in \mathcal{Q}$, and we wish to identify $p$. Absent privacy constraints, this problem requires $O(\log k)$ samples from $p$, and it was recently shown that the same complexity is achievable under (central) differential privacy. However, the naive approach to this problem under local differential privacy would require $\tilde O(k^2)$ samples. We first show that the constraint of local differential privacy incurs an exponential increase in cost: any algorithm for this problem requires at least $\Omega(k)$ samples. Second, for the special case of $k$-wise simple hypothesis testing, we provide a non-interactive algorithm which nearly matches this bound, requiring $\tilde O(k)$ samples. Finally, we provide sequentially interactive algorithms for the general case, requiring $\tilde O(k)$ samples and only $O(\log \log k)$ rounds of interactivity. Our algorithms are achieved through a reduction to maximum selection with adversarial comparators, a problem of independent interest for which we initiate study in the parallel setting. For this problem, we provide a family of algorithms for each number of allowed rounds of interaction $t$, as well as lower bounds showing that they are near-optimal for every $t$. Notably, our algorithms result in exponential improvements on the round complexity of previous methods.
APA
Gopi, S., Kamath, G., Kulkarni, J., Nikolov, A., Wu, Z.S. & Zhang, H.. (2020). Locally Private Hypothesis Selection. Proceedings of Thirty Third Conference on Learning Theory, in Proceedings of Machine Learning Research 125:1785-1816 Available from https://proceedings.mlr.press/v125/gopi20a.html.

Related Material