[edit]
A Nearly Optimal Variant of the Perceptron Algorithm for the Uniform Distribution on the Unit Sphere
Proceedings of Thirty Third Conference on Learning Theory, PMLR 125:3285-3295, 2020.
Abstract
We show a simple perceptron-like algorithm to learn origin-centered halfspaces in $\mathbb{R}^n$ with accuracy $1-\epsilon$ and confidence $1-\delta$ in time $\mathcal{O}\left(\frac{n^2}{\epsilon}\left(\log \frac{1}{\epsilon}+\log \frac{1}{\delta}\right)\right)$ using $\mathcal{O}\left(\frac{n}{\epsilon}\left(\log \frac{1}{\epsilon}+\log \frac{1}{\delta}\right)\right)$ labeled examples drawn uniformly from the unit $n$-sphere. This improves upon algorithms given in Baum(1990), Long(1994) and Servedio(1999). The time and sample complexity of our algorithm match the lower bounds given in Long(1995) up to logarithmic factors.