[edit]
Self-Supervised Pretraining with DICOM metadata in Ultrasound Imaging
Proceedings of the 5th Machine Learning for Healthcare Conference, PMLR 126:732-749, 2020.
Abstract
Modern deep learning algorithms geared towards clinical adaption usually rely on a large amount of high fidelity labeled data. Low-resource settings pose challenges like acquiring high fidelity data and becomes the bottleneck for developing artificial intelligence applications. Ultrasound images, stored in Digital Imaging and Communication in Medicine (DICOM) format, have additional metadata data corresponding to ultrasound image parameters and medical exams. In this work, we leverage DICOM metadata from ultrasound images to help learn representations of the ultrasound image. We demonstrate that the proposed method outperforms the approaches without using metadata across a variety of downstream tasks.