[edit]
Last-Iterate Convergence Rates for Min-Max Optimization: Convergence of Hamiltonian Gradient Descent and Consensus Optimization
Proceedings of the 32nd International Conference on Algorithmic Learning Theory, PMLR 132:3-47, 2021.
Abstract
While classic work in convex-concave min-max optimization relies on average-iterate convergence results, the emergence of nonconvex applications such as training Generative Adversarial Networks has led to renewed interest in last-iterate convergence guarantees. Proving last-iterate convergence is challenging because many natural algorithms, such as Simultaneous Gradient Descent/Ascent, provably diverge or cycle even in simple convex-concave min-max settings, and there are relatively few papers that prove global last-iterate convergence rates beyond the bilinear and convex-strongly concave settings. In this work, we show that the Hamiltonian Gradient Descent (HGD) algorithm achieves linear convergence in a variety of more general settings, including convex-concave problems that satisfy a "sufficiently bilinear" condition. We also prove convergence rates for stochastic HGD and for some parameter settings of the Consensus Optimization algorithm of Mescheder et al. (2017).