[edit]
Stochastic block model entropy and broadcasting on trees with survey
Proceedings of Thirty Fourth Conference on Learning Theory, PMLR 134:1-25, 2021.
Abstract
The limit of the entropy in the stochastic block model (SBM) has been characterized in the sparse regime for the special case of disassortative communities [Coja-Oghlan et al. (2017)] and for the classical case of assortative communities but in the dense regime [Deshpande et al. (2016)]. The problem has not been closed in the classical sparse and assortative case. This paper establishes the result in this case for any SNR besides for the interval (1, 3.513). It further gives an approximation to the limit in this window. The result is obtained by expressing the global SBM entropy as an integral of local tree entropies in a broadcasting on tree model with erasure side-information. The main technical advancement then relies on showing the irrelevance of the boundary in such a model, also studied with variants in [Kanade et al. (2016)], [Mossel et al. (2016)] and [Mossel and Xu (2015)]. In particular, we establish the uniqueness of the BP fixed point in the survey model for any SNR above 3.513 or below 1. This only leaves a narrow region in the plane between SNR and survey strength where the uniqueness of BP conjectured in these papers remains unproved.