[edit]
Robust learning under clean-label attack
Proceedings of Thirty Fourth Conference on Learning Theory, PMLR 134:591-634, 2021.
Abstract
We study the problem of robust learning under clean-label data-poisoning attacks, where the attacker injects (an arbitrary set of) \emph{correctly-labeled} examples to the training set to fool the algorithm into making mistakes on \emph{specific} test instances at test time. The learning goal is to minimize the attackable rate (the probability mass of attackable test instances), which is more difficult than optimal PAC learning. As we show, any robust algorithm with diminishing attackable rate can achieve the optimal dependence on $\epsilon$ in its PAC sample complexity, i.e., $O(1/\epsilon)$. On the other hand, the attackable rate might be large even for some optimal PAC learners, e.g., SVM for linear classifiers. Furthermore, we show that the class of linear hypotheses is not robustly learnable when the data distribution has zero margin and is robustly learnable in the case of positive margin but requires sample complexity exponential in the dimension. For a general hypothesis class with bounded VC dimension, if the attacker is limited to add at most $t=O(1/\epsilon)$ poison examples, the optimal robust learning sample complexity grows linearly with $t$.