Off-Belief Learning

Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, Noam Brown, Jakob Foerster
Proceedings of the 38th International Conference on Machine Learning, PMLR 139:4369-4379, 2021.

Abstract

The standard problem setting in Dec-POMDPs is self-play, where the goal is to find a set of policies that play optimally together. Policies learned through self-play may adopt arbitrary conventions and implicitly rely on multi-step reasoning based on fragile assumptions about other agents’ actions and thus fail when paired with humans or independently trained agents at test time. To address this, we present off-belief learning (OBL). At each timestep OBL agents follow a policy $\pi_1$ that is optimized assuming past actions were taken by a given, fixed policy ($\pi_0$), but assuming that future actions will be taken by $\pi_1$. When $\pi_0$ is uniform random, OBL converges to an optimal policy that does not rely on inferences based on other agents’ behavior (an optimal grounded policy). OBL can be iterated in a hierarchy, where the optimal policy from one level becomes the input to the next, thereby introducing multi-level cognitive reasoning in a controlled manner. Unlike existing approaches, which may converge to any equilibrium policy, OBL converges to a unique policy, making it suitable for zero-shot coordination (ZSC). OBL can be scaled to high-dimensional settings with a fictitious transition mechanism and shows strong performance in both a toy-setting and the benchmark human-AI & ZSC problem Hanabi.

Cite this Paper


BibTeX
@InProceedings{pmlr-v139-hu21c, title = {Off-Belief Learning}, author = {Hu, Hengyuan and Lerer, Adam and Cui, Brandon and Pineda, Luis and Brown, Noam and Foerster, Jakob}, booktitle = {Proceedings of the 38th International Conference on Machine Learning}, pages = {4369--4379}, year = {2021}, editor = {Meila, Marina and Zhang, Tong}, volume = {139}, series = {Proceedings of Machine Learning Research}, month = {18--24 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v139/hu21c/hu21c.pdf}, url = {https://proceedings.mlr.press/v139/hu21c.html}, abstract = {The standard problem setting in Dec-POMDPs is self-play, where the goal is to find a set of policies that play optimally together. Policies learned through self-play may adopt arbitrary conventions and implicitly rely on multi-step reasoning based on fragile assumptions about other agents’ actions and thus fail when paired with humans or independently trained agents at test time. To address this, we present off-belief learning (OBL). At each timestep OBL agents follow a policy $\pi_1$ that is optimized assuming past actions were taken by a given, fixed policy ($\pi_0$), but assuming that future actions will be taken by $\pi_1$. When $\pi_0$ is uniform random, OBL converges to an optimal policy that does not rely on inferences based on other agents’ behavior (an optimal grounded policy). OBL can be iterated in a hierarchy, where the optimal policy from one level becomes the input to the next, thereby introducing multi-level cognitive reasoning in a controlled manner. Unlike existing approaches, which may converge to any equilibrium policy, OBL converges to a unique policy, making it suitable for zero-shot coordination (ZSC). OBL can be scaled to high-dimensional settings with a fictitious transition mechanism and shows strong performance in both a toy-setting and the benchmark human-AI & ZSC problem Hanabi.} }
Endnote
%0 Conference Paper %T Off-Belief Learning %A Hengyuan Hu %A Adam Lerer %A Brandon Cui %A Luis Pineda %A Noam Brown %A Jakob Foerster %B Proceedings of the 38th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2021 %E Marina Meila %E Tong Zhang %F pmlr-v139-hu21c %I PMLR %P 4369--4379 %U https://proceedings.mlr.press/v139/hu21c.html %V 139 %X The standard problem setting in Dec-POMDPs is self-play, where the goal is to find a set of policies that play optimally together. Policies learned through self-play may adopt arbitrary conventions and implicitly rely on multi-step reasoning based on fragile assumptions about other agents’ actions and thus fail when paired with humans or independently trained agents at test time. To address this, we present off-belief learning (OBL). At each timestep OBL agents follow a policy $\pi_1$ that is optimized assuming past actions were taken by a given, fixed policy ($\pi_0$), but assuming that future actions will be taken by $\pi_1$. When $\pi_0$ is uniform random, OBL converges to an optimal policy that does not rely on inferences based on other agents’ behavior (an optimal grounded policy). OBL can be iterated in a hierarchy, where the optimal policy from one level becomes the input to the next, thereby introducing multi-level cognitive reasoning in a controlled manner. Unlike existing approaches, which may converge to any equilibrium policy, OBL converges to a unique policy, making it suitable for zero-shot coordination (ZSC). OBL can be scaled to high-dimensional settings with a fictitious transition mechanism and shows strong performance in both a toy-setting and the benchmark human-AI & ZSC problem Hanabi.
APA
Hu, H., Lerer, A., Cui, B., Pineda, L., Brown, N. & Foerster, J.. (2021). Off-Belief Learning. Proceedings of the 38th International Conference on Machine Learning, in Proceedings of Machine Learning Research 139:4369-4379 Available from https://proceedings.mlr.press/v139/hu21c.html.

Related Material