[edit]
Leveraging Language to Learn Program Abstractions and Search Heuristics
Proceedings of the 38th International Conference on Machine Learning, PMLR 139:11193-11204, 2021.
Abstract
Inductive program synthesis, or inferring programs from examples of desired behavior, offers a general paradigm for building interpretable, robust, andgeneralizable machine learning systems. Effective program synthesis depends on two key ingredients: a strong library of functions from which to build programs, and an efficient search strategy for finding programs that solve a given task. We introduce LAPS (Language for Abstraction and Program Search), a technique for using natural language annotations to guide joint learning of libraries and neurally-guided search models for synthesis. When integrated into a state-of-the-art library learning system (DreamCoder), LAPS produces higher-quality libraries and improves search efficiency and generalization on three domains {–} string editing, image composition, and abstract reasoning about scenes {–} even when no natural language hints are available at test time.