[edit]
Distributed Nyström Kernel Learning with Communications
Proceedings of the 38th International Conference on Machine Learning, PMLR 139:12019-12028, 2021.
Abstract
We study the statistical performance for distributed kernel ridge regression with Nyström (DKRR-NY) and with Nyström and iterative solvers (DKRR-NY-PCG) and successfully derive the optimal learning rates, which can improve the ranges of the number of local processors p to the optimal in existing state-of-art bounds. More precisely, our theoretical analysis show that DKRR-NY and DKRR-NY-PCG achieve the same learning rates as the exact KRR requiring essentially O(|D|1.5) time and O(|D|) memory with relaxing the restriction on p in expectation, where |D| is the number of data, which exhibits the average effectiveness of multiple trials. Furthermore, for showing the generalization performance in a single trial, we deduce the learning rates for DKRR-NY and DKRR-NY-PCG in probability. Finally, we propose a novel algorithm DKRR-NY-CM based on DKRR-NY, which employs a communication strategy to further improve the learning performance, whose effectiveness of communications is validated in theoretical and experimental analysis.