[edit]
Explainable Image Quality Analysis of Chest X-Rays
Proceedings of the Fourth Conference on Medical Imaging with Deep Learning, PMLR 143:567-580, 2021.
Abstract
Medical image quality assessment is an important aspect of image acquisition where poor-quality images may lead to misdiagnosis. In addition, manual labelling of image quality after the acquisition is often tedious and can lead to some misleading results. Despite much research on the automated analysis of image quality for tackling this problem, relatively little work has been done for the explanation of the methodologies. In this work, we propose an explainable image quality assessment system and validate our idea on foreign objects in a Chest X-Ray (Object-CXR) dataset. Our explainable pipeline relies on NormGrad, an algorithm, which can efficiently localize the image quality issues with saliency maps of the classifier. We compare our method with a range of saliency detection methods and illustrate the superior performance of NormGrad by obtaining a Pointing Game accuracy of 0.862 on the test dataset of the Object-CXR dataset. We also verify our findings through a qualitative analysis by visualizing attention maps for foreign objects on X-Ray images.