Nonlinear state-space identification using deep encoder networks

Gerben Beintema, Roland Toth, Maarten Schoukens
Proceedings of the 3rd Conference on Learning for Dynamics and Control, PMLR 144:241-250, 2021.

Abstract

Nonlinear state-space identification for dynamical systems is most often performed by minimizing the simulation error to reduce the effect of model errors. This optimization problem becomes computationally expensive for large datasets. Moreover, the problem is also strongly non-convex, often leading to sub-optimal parameter estimates. This paper introduces a method that approximates the simulation loss by splitting the data set into multiple independent sections similar to the multiple shooting method. This splitting operation allows for the use of stochastic gradient optimization methods which scale well with data set size and has a smoothing effect on the non-convex cost function. The main contribution of this paper is the introduction of an encoder function to estimate the initial state at the start of each section. The encoder function estimates the initial states using a feed-forward neural network starting from historical input and output samples. The efficiency and performance of the proposed state-space encoder method is illustrated on two well-known benchmarks where, for instance, the method achieves the lowest known simulation error on the Wiener–Hammerstein benchmark.

Cite this Paper


BibTeX
@InProceedings{pmlr-v144-beintema21a, title = {Nonlinear state-space identification using deep encoder networks}, author = {Beintema, Gerben and Toth, Roland and Schoukens, Maarten}, booktitle = {Proceedings of the 3rd Conference on Learning for Dynamics and Control}, pages = {241--250}, year = {2021}, editor = {Jadbabaie, Ali and Lygeros, John and Pappas, George J. and A. Parrilo, Pablo and Recht, Benjamin and Tomlin, Claire J. and Zeilinger, Melanie N.}, volume = {144}, series = {Proceedings of Machine Learning Research}, month = {07 -- 08 June}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v144/beintema21a/beintema21a.pdf}, url = {https://proceedings.mlr.press/v144/beintema21a.html}, abstract = {Nonlinear state-space identification for dynamical systems is most often performed by minimizing the simulation error to reduce the effect of model errors. This optimization problem becomes computationally expensive for large datasets. Moreover, the problem is also strongly non-convex, often leading to sub-optimal parameter estimates. This paper introduces a method that approximates the simulation loss by splitting the data set into multiple independent sections similar to the multiple shooting method. This splitting operation allows for the use of stochastic gradient optimization methods which scale well with data set size and has a smoothing effect on the non-convex cost function. The main contribution of this paper is the introduction of an encoder function to estimate the initial state at the start of each section. The encoder function estimates the initial states using a feed-forward neural network starting from historical input and output samples. The efficiency and performance of the proposed state-space encoder method is illustrated on two well-known benchmarks where, for instance, the method achieves the lowest known simulation error on the Wiener–Hammerstein benchmark.} }
Endnote
%0 Conference Paper %T Nonlinear state-space identification using deep encoder networks %A Gerben Beintema %A Roland Toth %A Maarten Schoukens %B Proceedings of the 3rd Conference on Learning for Dynamics and Control %C Proceedings of Machine Learning Research %D 2021 %E Ali Jadbabaie %E John Lygeros %E George J. Pappas %E Pablo A. Parrilo %E Benjamin Recht %E Claire J. Tomlin %E Melanie N. Zeilinger %F pmlr-v144-beintema21a %I PMLR %P 241--250 %U https://proceedings.mlr.press/v144/beintema21a.html %V 144 %X Nonlinear state-space identification for dynamical systems is most often performed by minimizing the simulation error to reduce the effect of model errors. This optimization problem becomes computationally expensive for large datasets. Moreover, the problem is also strongly non-convex, often leading to sub-optimal parameter estimates. This paper introduces a method that approximates the simulation loss by splitting the data set into multiple independent sections similar to the multiple shooting method. This splitting operation allows for the use of stochastic gradient optimization methods which scale well with data set size and has a smoothing effect on the non-convex cost function. The main contribution of this paper is the introduction of an encoder function to estimate the initial state at the start of each section. The encoder function estimates the initial states using a feed-forward neural network starting from historical input and output samples. The efficiency and performance of the proposed state-space encoder method is illustrated on two well-known benchmarks where, for instance, the method achieves the lowest known simulation error on the Wiener–Hammerstein benchmark.
APA
Beintema, G., Toth, R. & Schoukens, M.. (2021). Nonlinear state-space identification using deep encoder networks. Proceedings of the 3rd Conference on Learning for Dynamics and Control, in Proceedings of Machine Learning Research 144:241-250 Available from https://proceedings.mlr.press/v144/beintema21a.html.

Related Material