Phase Retrieval with Holography and Untrained Priors: Tackling the Challenges of Low-Photon Nanoscale Imaging

Hannah Lawrence, David Barmherzig, Henry Li, Michael Eickenberg, Marylou Gabrie
Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference, PMLR 145:516-567, 2022.

Abstract

Phase retrieval is the inverse problem of recovering a signal from magnitude-only Fourier measure- ments, and underlies numerous imaging modalities, such as Coherent Diffraction Imaging (CDI). A variant of this setup, known as holography, includes a reference object that is placed adjacent to the specimen of interest before measurements are collected. The resulting inverse problem, known as holographic phase retrieval, is well-known to have improved problem conditioning relative to the original. This innovation, i.e. Holographic CDI, becomes crucial at the nanoscale, where imaging specimens such as viruses, proteins, and crystals require low-photon measurements. This data is highly corrupted by Poisson shot noise, and often lacks low-frequency content as well. In this work, we introduce a dataset-free deep learning framework for holographic phase retrieval adapted to these challenges. The key ingredients of our approach are the explicit and flexible incorporation of the physical forward model into an automatic differentiation procedure, the Poisson log-likelihood objective function, and an optional untrained deep image prior. We perform extensive evaluation under realistic conditions. Compared to competing classical methods, our method recovers signal from higher noise levels and is more resilient to suboptimal reference design, as well as to large missing regions of low frequencies in the observations. Finally, we show that these properties carry over to experimental data acquired on optical wavelengths. To the best of our knowledge, this is the first work to consider a dataset-free machine learning approach for holographic phase retrieval.

Cite this Paper


BibTeX
@InProceedings{pmlr-v145-lawrence22a, title = {Phase Retrieval with Holography and Untrained Priors: Tackling the Challenges of Low-Photon Nanoscale Imaging}, author = {Lawrence, Hannah and Barmherzig, David and Li, Henry and Eickenberg, Michael and Gabrie, Marylou}, booktitle = {Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference}, pages = {516--567}, year = {2022}, editor = {Bruna, Joan and Hesthaven, Jan and Zdeborova, Lenka}, volume = {145}, series = {Proceedings of Machine Learning Research}, month = {16--19 Aug}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v145/lawrence22a/lawrence22a.pdf}, url = {https://proceedings.mlr.press/v145/lawrence22a.html}, abstract = {Phase retrieval is the inverse problem of recovering a signal from magnitude-only Fourier measure- ments, and underlies numerous imaging modalities, such as Coherent Diffraction Imaging (CDI). A variant of this setup, known as holography, includes a reference object that is placed adjacent to the specimen of interest before measurements are collected. The resulting inverse problem, known as holographic phase retrieval, is well-known to have improved problem conditioning relative to the original. This innovation, i.e. Holographic CDI, becomes crucial at the nanoscale, where imaging specimens such as viruses, proteins, and crystals require low-photon measurements. This data is highly corrupted by Poisson shot noise, and often lacks low-frequency content as well. In this work, we introduce a dataset-free deep learning framework for holographic phase retrieval adapted to these challenges. The key ingredients of our approach are the explicit and flexible incorporation of the physical forward model into an automatic differentiation procedure, the Poisson log-likelihood objective function, and an optional untrained deep image prior. We perform extensive evaluation under realistic conditions. Compared to competing classical methods, our method recovers signal from higher noise levels and is more resilient to suboptimal reference design, as well as to large missing regions of low frequencies in the observations. Finally, we show that these properties carry over to experimental data acquired on optical wavelengths. To the best of our knowledge, this is the first work to consider a dataset-free machine learning approach for holographic phase retrieval. } }
Endnote
%0 Conference Paper %T Phase Retrieval with Holography and Untrained Priors: Tackling the Challenges of Low-Photon Nanoscale Imaging %A Hannah Lawrence %A David Barmherzig %A Henry Li %A Michael Eickenberg %A Marylou Gabrie %B Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference %C Proceedings of Machine Learning Research %D 2022 %E Joan Bruna %E Jan Hesthaven %E Lenka Zdeborova %F pmlr-v145-lawrence22a %I PMLR %P 516--567 %U https://proceedings.mlr.press/v145/lawrence22a.html %V 145 %X Phase retrieval is the inverse problem of recovering a signal from magnitude-only Fourier measure- ments, and underlies numerous imaging modalities, such as Coherent Diffraction Imaging (CDI). A variant of this setup, known as holography, includes a reference object that is placed adjacent to the specimen of interest before measurements are collected. The resulting inverse problem, known as holographic phase retrieval, is well-known to have improved problem conditioning relative to the original. This innovation, i.e. Holographic CDI, becomes crucial at the nanoscale, where imaging specimens such as viruses, proteins, and crystals require low-photon measurements. This data is highly corrupted by Poisson shot noise, and often lacks low-frequency content as well. In this work, we introduce a dataset-free deep learning framework for holographic phase retrieval adapted to these challenges. The key ingredients of our approach are the explicit and flexible incorporation of the physical forward model into an automatic differentiation procedure, the Poisson log-likelihood objective function, and an optional untrained deep image prior. We perform extensive evaluation under realistic conditions. Compared to competing classical methods, our method recovers signal from higher noise levels and is more resilient to suboptimal reference design, as well as to large missing regions of low frequencies in the observations. Finally, we show that these properties carry over to experimental data acquired on optical wavelengths. To the best of our knowledge, this is the first work to consider a dataset-free machine learning approach for holographic phase retrieval.
APA
Lawrence, H., Barmherzig, D., Li, H., Eickenberg, M. & Gabrie, M.. (2022). Phase Retrieval with Holography and Untrained Priors: Tackling the Challenges of Low-Photon Nanoscale Imaging. Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference, in Proceedings of Machine Learning Research 145:516-567 Available from https://proceedings.mlr.press/v145/lawrence22a.html.

Related Material