Risk score learning for COVID-19 contact tracing apps

Kevin Murphy, Abhishek Kumar, Stylianos Serghiou
Proceedings of the 6th Machine Learning for Healthcare Conference, PMLR 149:373-390, 2021.

Abstract

Digital contact tracing apps for COVID-19, such as the one developed by Google and Apple, need to estimate the risk that a user was infected during a particular exposure, in order to decide whether to notify the user to take precautions, such as entering into quarantine, or requesting a test. Such risk score models contain numerous parameters that must be set by the public health authority. In this paper, we show how to automatically learn these parameters from data. Our method needs access to exposure and outcome data. Although this data is already being collected (in an aggregated, privacy-preserving way) by several health authorities, in this paper we limit ourselves to simulated data, so that we can systematically study the different factors that affect the feasibility of the approach. In particular, we show that the parameters become harder to estimate when there is more missing data (e.g., due to infections which were not recorded by the app), and when there is model misspecification. Nevertheless, the learning approach outperforms a strong manually designed baseline. Furthermore, the learning approach can adapt even when the risk factors of the disease change, e.g., due to the evolution of new variants, or the adoption of vaccines.

Cite this Paper


BibTeX
@InProceedings{pmlr-v149-murphy21a, title = {Risk score learning for COVID-19 contact tracing apps}, author = {Murphy, Kevin and Kumar, Abhishek and Serghiou, Stylianos}, booktitle = {Proceedings of the 6th Machine Learning for Healthcare Conference}, pages = {373--390}, year = {2021}, editor = {Jung, Ken and Yeung, Serena and Sendak, Mark and Sjoding, Michael and Ranganath, Rajesh}, volume = {149}, series = {Proceedings of Machine Learning Research}, month = {06--07 Aug}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v149/murphy21a/murphy21a.pdf}, url = {https://proceedings.mlr.press/v149/murphy21a.html}, abstract = {Digital contact tracing apps for COVID-19, such as the one developed by Google and Apple, need to estimate the risk that a user was infected during a particular exposure, in order to decide whether to notify the user to take precautions, such as entering into quarantine, or requesting a test. Such risk score models contain numerous parameters that must be set by the public health authority. In this paper, we show how to automatically learn these parameters from data. Our method needs access to exposure and outcome data. Although this data is already being collected (in an aggregated, privacy-preserving way) by several health authorities, in this paper we limit ourselves to simulated data, so that we can systematically study the different factors that affect the feasibility of the approach. In particular, we show that the parameters become harder to estimate when there is more missing data (e.g., due to infections which were not recorded by the app), and when there is model misspecification. Nevertheless, the learning approach outperforms a strong manually designed baseline. Furthermore, the learning approach can adapt even when the risk factors of the disease change, e.g., due to the evolution of new variants, or the adoption of vaccines.} }
Endnote
%0 Conference Paper %T Risk score learning for COVID-19 contact tracing apps %A Kevin Murphy %A Abhishek Kumar %A Stylianos Serghiou %B Proceedings of the 6th Machine Learning for Healthcare Conference %C Proceedings of Machine Learning Research %D 2021 %E Ken Jung %E Serena Yeung %E Mark Sendak %E Michael Sjoding %E Rajesh Ranganath %F pmlr-v149-murphy21a %I PMLR %P 373--390 %U https://proceedings.mlr.press/v149/murphy21a.html %V 149 %X Digital contact tracing apps for COVID-19, such as the one developed by Google and Apple, need to estimate the risk that a user was infected during a particular exposure, in order to decide whether to notify the user to take precautions, such as entering into quarantine, or requesting a test. Such risk score models contain numerous parameters that must be set by the public health authority. In this paper, we show how to automatically learn these parameters from data. Our method needs access to exposure and outcome data. Although this data is already being collected (in an aggregated, privacy-preserving way) by several health authorities, in this paper we limit ourselves to simulated data, so that we can systematically study the different factors that affect the feasibility of the approach. In particular, we show that the parameters become harder to estimate when there is more missing data (e.g., due to infections which were not recorded by the app), and when there is model misspecification. Nevertheless, the learning approach outperforms a strong manually designed baseline. Furthermore, the learning approach can adapt even when the risk factors of the disease change, e.g., due to the evolution of new variants, or the adoption of vaccines.
APA
Murphy, K., Kumar, A. & Serghiou, S.. (2021). Risk score learning for COVID-19 contact tracing apps. Proceedings of the 6th Machine Learning for Healthcare Conference, in Proceedings of Machine Learning Research 149:373-390 Available from https://proceedings.mlr.press/v149/murphy21a.html.

Related Material