Fast and accurate optimization on the orthogonal manifold without retraction

Pierre Ablin, Gabriel Peyré
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR 151:5636-5657, 2022.

Abstract

We consider the problem of minimizing a function over the manifold of orthogonal matrices. The majority of algorithms for this problem compute a direction in the tangent space, and then use a retraction to move in that direction while staying on the manifold. Unfortunately, the numerical computation of retractions on the orthogonal manifold always involves some expensive linear algebra operation, such as matrix inversion, exponential or square-root. These operations quickly become expensive as the dimension of the matrices grows. To bypass this limitation, we propose the landing algorithm which does not use retractions. The algorithm is not constrained to stay on the manifold but its evolution is driven by a potential energy which progressively attracts it towards the manifold. One iteration of the landing algorithm only involves matrix multiplications, which makes it cheap compared to its retraction counterparts. We provide an analysis of the convergence of the algorithm, and demonstrate its promises on large-scale and deep learning problems, where it is faster and less prone to numerical errors than retraction-based methods.

Cite this Paper


BibTeX
@InProceedings{pmlr-v151-ablin22a, title = { Fast and accurate optimization on the orthogonal manifold without retraction }, author = {Ablin, Pierre and Peyr\'e, Gabriel}, booktitle = {Proceedings of The 25th International Conference on Artificial Intelligence and Statistics}, pages = {5636--5657}, year = {2022}, editor = {Camps-Valls, Gustau and Ruiz, Francisco J. R. and Valera, Isabel}, volume = {151}, series = {Proceedings of Machine Learning Research}, month = {28--30 Mar}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v151/ablin22a/ablin22a.pdf}, url = {https://proceedings.mlr.press/v151/ablin22a.html}, abstract = { We consider the problem of minimizing a function over the manifold of orthogonal matrices. The majority of algorithms for this problem compute a direction in the tangent space, and then use a retraction to move in that direction while staying on the manifold. Unfortunately, the numerical computation of retractions on the orthogonal manifold always involves some expensive linear algebra operation, such as matrix inversion, exponential or square-root. These operations quickly become expensive as the dimension of the matrices grows. To bypass this limitation, we propose the landing algorithm which does not use retractions. The algorithm is not constrained to stay on the manifold but its evolution is driven by a potential energy which progressively attracts it towards the manifold. One iteration of the landing algorithm only involves matrix multiplications, which makes it cheap compared to its retraction counterparts. We provide an analysis of the convergence of the algorithm, and demonstrate its promises on large-scale and deep learning problems, where it is faster and less prone to numerical errors than retraction-based methods. } }
Endnote
%0 Conference Paper %T Fast and accurate optimization on the orthogonal manifold without retraction %A Pierre Ablin %A Gabriel Peyré %B Proceedings of The 25th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2022 %E Gustau Camps-Valls %E Francisco J. R. Ruiz %E Isabel Valera %F pmlr-v151-ablin22a %I PMLR %P 5636--5657 %U https://proceedings.mlr.press/v151/ablin22a.html %V 151 %X We consider the problem of minimizing a function over the manifold of orthogonal matrices. The majority of algorithms for this problem compute a direction in the tangent space, and then use a retraction to move in that direction while staying on the manifold. Unfortunately, the numerical computation of retractions on the orthogonal manifold always involves some expensive linear algebra operation, such as matrix inversion, exponential or square-root. These operations quickly become expensive as the dimension of the matrices grows. To bypass this limitation, we propose the landing algorithm which does not use retractions. The algorithm is not constrained to stay on the manifold but its evolution is driven by a potential energy which progressively attracts it towards the manifold. One iteration of the landing algorithm only involves matrix multiplications, which makes it cheap compared to its retraction counterparts. We provide an analysis of the convergence of the algorithm, and demonstrate its promises on large-scale and deep learning problems, where it is faster and less prone to numerical errors than retraction-based methods.
APA
Ablin, P. & Peyré, G.. (2022). Fast and accurate optimization on the orthogonal manifold without retraction . Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 151:5636-5657 Available from https://proceedings.mlr.press/v151/ablin22a.html.

Related Material