[edit]
Conditionally Gaussian PAC-Bayes
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR 151:2311-2329, 2022.
Abstract
Recent studies have empirically investigated different methods to train stochastic neural networks on a classification task by optimising a PAC-Bayesian bound via stochastic gradient descent. Most of these procedures need to replace the misclassification error with a surrogate loss, leading to a mismatch between the optimisation objective and the actual generalisation bound. The present paper proposes a novel training algorithm that optimises the PAC-Bayesian bound, without relying on any surrogate loss. Empirical results show that this approach outperforms currently available PAC-Bayesian training methods.