Neural Contextual Bandits without Regret

Parnian Kassraie, Andreas Krause
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR 151:240-278, 2022.

Abstract

Contextual bandits are a rich model for sequential decision making given side information, with important applications, e.g., in recommender systems. We propose novel algorithms for contextual bandits harnessing neural networks to approximate the unknown reward function. We resolve the open problem of proving sublinear regret bounds in this setting for general context sequences, considering both fully-connected and convolutional networks. To this end, we first analyze NTK-UCB, a kernelized bandit optimization algorithm employing the Neural Tangent Kernel (NTK), and bound its regret in terms of the NTK maximum information gain $\gamma_T$, a complexity parameter capturing the difficulty of learning. Our bounds on $\gamma_T$ for the NTK may be of independent interest. We then introduce our neural network based algorithm NN-UCB, and show that its regret closely tracks that of NTK-UCB. Under broad non-parametric assumptions about the reward function, our approach converges to the optimal policy at a $\tilde{\mathcal{O}}(T^{-1/2d})$ rate, where $d$ is the dimension of the context.

Cite this Paper


BibTeX
@InProceedings{pmlr-v151-kassraie22a, title = { Neural Contextual Bandits without Regret }, author = {Kassraie, Parnian and Krause, Andreas}, booktitle = {Proceedings of The 25th International Conference on Artificial Intelligence and Statistics}, pages = {240--278}, year = {2022}, editor = {Camps-Valls, Gustau and Ruiz, Francisco J. R. and Valera, Isabel}, volume = {151}, series = {Proceedings of Machine Learning Research}, month = {28--30 Mar}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v151/kassraie22a/kassraie22a.pdf}, url = {https://proceedings.mlr.press/v151/kassraie22a.html}, abstract = { Contextual bandits are a rich model for sequential decision making given side information, with important applications, e.g., in recommender systems. We propose novel algorithms for contextual bandits harnessing neural networks to approximate the unknown reward function. We resolve the open problem of proving sublinear regret bounds in this setting for general context sequences, considering both fully-connected and convolutional networks. To this end, we first analyze NTK-UCB, a kernelized bandit optimization algorithm employing the Neural Tangent Kernel (NTK), and bound its regret in terms of the NTK maximum information gain $\gamma_T$, a complexity parameter capturing the difficulty of learning. Our bounds on $\gamma_T$ for the NTK may be of independent interest. We then introduce our neural network based algorithm NN-UCB, and show that its regret closely tracks that of NTK-UCB. Under broad non-parametric assumptions about the reward function, our approach converges to the optimal policy at a $\tilde{\mathcal{O}}(T^{-1/2d})$ rate, where $d$ is the dimension of the context. } }
Endnote
%0 Conference Paper %T Neural Contextual Bandits without Regret %A Parnian Kassraie %A Andreas Krause %B Proceedings of The 25th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2022 %E Gustau Camps-Valls %E Francisco J. R. Ruiz %E Isabel Valera %F pmlr-v151-kassraie22a %I PMLR %P 240--278 %U https://proceedings.mlr.press/v151/kassraie22a.html %V 151 %X Contextual bandits are a rich model for sequential decision making given side information, with important applications, e.g., in recommender systems. We propose novel algorithms for contextual bandits harnessing neural networks to approximate the unknown reward function. We resolve the open problem of proving sublinear regret bounds in this setting for general context sequences, considering both fully-connected and convolutional networks. To this end, we first analyze NTK-UCB, a kernelized bandit optimization algorithm employing the Neural Tangent Kernel (NTK), and bound its regret in terms of the NTK maximum information gain $\gamma_T$, a complexity parameter capturing the difficulty of learning. Our bounds on $\gamma_T$ for the NTK may be of independent interest. We then introduce our neural network based algorithm NN-UCB, and show that its regret closely tracks that of NTK-UCB. Under broad non-parametric assumptions about the reward function, our approach converges to the optimal policy at a $\tilde{\mathcal{O}}(T^{-1/2d})$ rate, where $d$ is the dimension of the context.
APA
Kassraie, P. & Krause, A.. (2022). Neural Contextual Bandits without Regret . Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 151:240-278 Available from https://proceedings.mlr.press/v151/kassraie22a.html.

Related Material