[edit]
Chernoff Sampling for Active Testing and Extension to Active Regression
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR 151:7384-7432, 2022.
Abstract
Active learning can reduce the number of samples needed to perform a hypothesis test and to estimate the parameters of a model. In this paper, we revisit the work of Chernoff that described an asymptotically optimal algorithm for performing a hypothesis test. We obtain a novel sample complexity bound for Chernoff’s algorithm, with a non-asymptotic term that characterizes its performance at a fixed confidence level. We also develop an extension of Chernoff sampling that can be used to estimate the parameters of a wide variety of models and we obtain a non-asymptotic bound on the estimation error. We apply our extension of Chernoff sampling to actively learn neural network models and to estimate parameters in real-data linear and non-linear regression problems, where our approach performs favorably to state-of-the-art methods.