Can Functional Transfer Methods Capture Simple Inductive Biases?

Arne Nix, Suhas Shrinivasan, Edgar Y. Walker, Fabian Sinz
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR 151:10703-10717, 2022.

Abstract

Transferring knowledge embedded in trained neural networks is a core problem in areas like model compression and continual learning. Among knowledge transfer approaches, functional transfer methods such as knowledge distillation and representational distance learning are particularly promising, since they allow for transferring knowledge across different architectures and tasks. Considering various characteristics of networks that are desirable to transfer, equivariance is a notable property that enables a network to capture valuable relationships in the data. We assess existing functional transfer methods on their ability to transfer equivariance and empirically show that they fail to even transfer shift equivariance, one of the simplest equivariances. Further theoretical analysis demonstrates that representational similarity methods, in fact, cannot guarantee the transfer of the intended equivariance. Motivated by these findings, we develop a novel transfer method that learns an equivariance model from a given teacher network and encourages the student network to acquire the same equivariance, via regularization. Experiments show that our method successfully transfers equivariance even in cases where highly restrictive methods, such as directly matching student and teacher representations, fail.

Cite this Paper


BibTeX
@InProceedings{pmlr-v151-nix22a, title = { Can Functional Transfer Methods Capture Simple Inductive Biases? }, author = {Nix, Arne and Shrinivasan, Suhas and Walker, Edgar Y. and Sinz, Fabian}, booktitle = {Proceedings of The 25th International Conference on Artificial Intelligence and Statistics}, pages = {10703--10717}, year = {2022}, editor = {Camps-Valls, Gustau and Ruiz, Francisco J. R. and Valera, Isabel}, volume = {151}, series = {Proceedings of Machine Learning Research}, month = {28--30 Mar}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v151/nix22a/nix22a.pdf}, url = {https://proceedings.mlr.press/v151/nix22a.html}, abstract = { Transferring knowledge embedded in trained neural networks is a core problem in areas like model compression and continual learning. Among knowledge transfer approaches, functional transfer methods such as knowledge distillation and representational distance learning are particularly promising, since they allow for transferring knowledge across different architectures and tasks. Considering various characteristics of networks that are desirable to transfer, equivariance is a notable property that enables a network to capture valuable relationships in the data. We assess existing functional transfer methods on their ability to transfer equivariance and empirically show that they fail to even transfer shift equivariance, one of the simplest equivariances. Further theoretical analysis demonstrates that representational similarity methods, in fact, cannot guarantee the transfer of the intended equivariance. Motivated by these findings, we develop a novel transfer method that learns an equivariance model from a given teacher network and encourages the student network to acquire the same equivariance, via regularization. Experiments show that our method successfully transfers equivariance even in cases where highly restrictive methods, such as directly matching student and teacher representations, fail. } }
Endnote
%0 Conference Paper %T Can Functional Transfer Methods Capture Simple Inductive Biases? %A Arne Nix %A Suhas Shrinivasan %A Edgar Y. Walker %A Fabian Sinz %B Proceedings of The 25th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2022 %E Gustau Camps-Valls %E Francisco J. R. Ruiz %E Isabel Valera %F pmlr-v151-nix22a %I PMLR %P 10703--10717 %U https://proceedings.mlr.press/v151/nix22a.html %V 151 %X Transferring knowledge embedded in trained neural networks is a core problem in areas like model compression and continual learning. Among knowledge transfer approaches, functional transfer methods such as knowledge distillation and representational distance learning are particularly promising, since they allow for transferring knowledge across different architectures and tasks. Considering various characteristics of networks that are desirable to transfer, equivariance is a notable property that enables a network to capture valuable relationships in the data. We assess existing functional transfer methods on their ability to transfer equivariance and empirically show that they fail to even transfer shift equivariance, one of the simplest equivariances. Further theoretical analysis demonstrates that representational similarity methods, in fact, cannot guarantee the transfer of the intended equivariance. Motivated by these findings, we develop a novel transfer method that learns an equivariance model from a given teacher network and encourages the student network to acquire the same equivariance, via regularization. Experiments show that our method successfully transfers equivariance even in cases where highly restrictive methods, such as directly matching student and teacher representations, fail.
APA
Nix, A., Shrinivasan, S., Walker, E.Y. & Sinz, F.. (2022). Can Functional Transfer Methods Capture Simple Inductive Biases? . Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 151:10703-10717 Available from https://proceedings.mlr.press/v151/nix22a.html.

Related Material