[edit]

# Information-Theoretic Analysis of Epistemic Uncertainty in Bayesian Meta-learning

*Proceedings of The 25th International Conference on Artificial Intelligence and Statistics*, PMLR 151:9758-9775, 2022.

#### Abstract

The overall predictive uncertainty of a trained predictor can be decomposed into separate contributions due to epistemic and aleatoric uncertainty. Under a Bayesian formulation, assuming a well-specified model, the two contributions can be exactly expressed (for the log-loss) or bounded (for more general losses) in terms of information-theoretic quantities (Xu and Raginsky [2020]). This paper addresses the study of epistemic uncertainty within an information-theoretic framework in the broader setting of Bayesian meta-learning. A general hierarchical Bayesian model is assumed in which hyperparameters determine the per-task priors of the model parameters. Exact characterizations (for the log-loss) and bounds (for more general losses) are derived for the epistemic uncertainty – quantified by the minimum excess meta-risk (MEMR)– of optimal meta-learning rules. This characterization is leveraged to bring insights into the dependence of the epistemic uncertainty on the number of tasks and on the amount of per-task training data. Experiments are presented that use the proposed information-theoretic bounds, evaluated via neural mutual information estimators, to compare the performance of conventional learning and meta-learning as the number of meta-learning tasks increases.