Bayesian Classifier Fusion with an Explicit Model of Correlation

Susanne Trick, Constantin Rothkopf
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR 151:2282-2310, 2022.

Abstract

Combining the outputs of multiple classifiers or experts into a single probabilistic classification is a fundamental task in machine learning with broad applications from classifier fusion to expert opinion pooling. Here we present a hierarchical Bayesian model of probabilistic classifier fusion based on a new correlated Dirichlet distribution. This distribution explicitly models positive correlations between marginally Dirichlet-distributed random vectors thereby allowing explicit modeling of correlations between base classifiers or experts. The proposed model naturally accommodates the classic Independent Opinion Pool and other independent fusion algorithms as special cases. It is evaluated by uncertainty reduction and correctness of fusion on synthetic and real-world data sets. We show that a change in performance of the fused classifier due to uncertainty reduction can be Bayes optimal even for highly correlated base classifiers.

Cite this Paper


BibTeX
@InProceedings{pmlr-v151-trick22a, title = { Bayesian Classifier Fusion with an Explicit Model of Correlation }, author = {Trick, Susanne and Rothkopf, Constantin}, booktitle = {Proceedings of The 25th International Conference on Artificial Intelligence and Statistics}, pages = {2282--2310}, year = {2022}, editor = {Camps-Valls, Gustau and Ruiz, Francisco J. R. and Valera, Isabel}, volume = {151}, series = {Proceedings of Machine Learning Research}, month = {28--30 Mar}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v151/trick22a/trick22a.pdf}, url = {https://proceedings.mlr.press/v151/trick22a.html}, abstract = { Combining the outputs of multiple classifiers or experts into a single probabilistic classification is a fundamental task in machine learning with broad applications from classifier fusion to expert opinion pooling. Here we present a hierarchical Bayesian model of probabilistic classifier fusion based on a new correlated Dirichlet distribution. This distribution explicitly models positive correlations between marginally Dirichlet-distributed random vectors thereby allowing explicit modeling of correlations between base classifiers or experts. The proposed model naturally accommodates the classic Independent Opinion Pool and other independent fusion algorithms as special cases. It is evaluated by uncertainty reduction and correctness of fusion on synthetic and real-world data sets. We show that a change in performance of the fused classifier due to uncertainty reduction can be Bayes optimal even for highly correlated base classifiers. } }
Endnote
%0 Conference Paper %T Bayesian Classifier Fusion with an Explicit Model of Correlation %A Susanne Trick %A Constantin Rothkopf %B Proceedings of The 25th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2022 %E Gustau Camps-Valls %E Francisco J. R. Ruiz %E Isabel Valera %F pmlr-v151-trick22a %I PMLR %P 2282--2310 %U https://proceedings.mlr.press/v151/trick22a.html %V 151 %X Combining the outputs of multiple classifiers or experts into a single probabilistic classification is a fundamental task in machine learning with broad applications from classifier fusion to expert opinion pooling. Here we present a hierarchical Bayesian model of probabilistic classifier fusion based on a new correlated Dirichlet distribution. This distribution explicitly models positive correlations between marginally Dirichlet-distributed random vectors thereby allowing explicit modeling of correlations between base classifiers or experts. The proposed model naturally accommodates the classic Independent Opinion Pool and other independent fusion algorithms as special cases. It is evaluated by uncertainty reduction and correctness of fusion on synthetic and real-world data sets. We show that a change in performance of the fused classifier due to uncertainty reduction can be Bayes optimal even for highly correlated base classifiers.
APA
Trick, S. & Rothkopf, C.. (2022). Bayesian Classifier Fusion with an Explicit Model of Correlation . Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 151:2282-2310 Available from https://proceedings.mlr.press/v151/trick22a.html.

Related Material