[edit]
Momentum Accelerates the Convergence of Stochastic AUPRC Maximization
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR 151:3753-3771, 2022.
Abstract
In this paper, we study stochastic optimization of areas under precision-recall curves (AUPRC), which is widely used for combating imbalanced classification tasks. Although a few methods have been proposed for maximizing AUPRC, stochastic optimization of AUPRC with convergence guarantee remains an undeveloped territory. A state-of-the-art complexity is $O(1/\epsilon^5)$ for finding an $\epsilon$-stationary solution. In this paper, we further improve the stochastic optimization of AURPC by (i) developing novel stochastic momentum methods with a better iteration complexity of $O(1/\epsilon^4)$ for finding an $\epsilon$-stationary solution; and (ii) designing a novel family of stochastic adaptive methods with the same iteration complexity, which enjoy faster convergence in practice. To this end, we propose two innovative techniques that are critical for improving the convergence: (i) the biased estimators for tracking individual ranking scores are updated in a randomized coordinate-wise manner; and (ii) a momentum update is used on top of the stochastic gradient estimator for tracking the gradient of the objective. The novel analysis of Adam-style updates is also one main contribution. Extensive experiments on various data sets demonstrate the effectiveness of the proposed algorithms. Of independent interest, the proposed stochastic momentum and adaptive algorithms are also applicable to a class of two-level stochastic dependent compositional optimization problems.