[edit]
SMARTS: An Open-Source Scalable Multi-Agent RL Training School for Autonomous Driving
Proceedings of the 2020 Conference on Robot Learning, PMLR 155:264-285, 2021.
Abstract
Interaction is fundamental in autonomous driving (AD). Despite more than a decade of intensive R&D in AD, how to dynamically interact with diverse road users in various contexts still remains unsolved. Multi-agent learning has recently seen big breakthroughs and has much to offer towards solving realistic interaction in AD. However, to realize this potential we need multi-agent AD simulation of realistic interaction. To break this apparent chicken-and-egg circularity, we built an AD simulation platform called SMARTS (Scalable Multi-Agent Rl Training School), which is designed to accumulate behavior models of road users towards increasingly realistic and diverse interaction that in turn enables deeper and broader multi-agent research on interaction. In this paper, we describe the design goals of SMARTS, explain its key architectural ideas, illustrate its use for multi-agent research through experiments on concrete interaction scenarios, and introduce a set of benchmarks and metrics. As an open-source, industrial-strength platform, the future of SMARTS lies in its growth along with the multi-agent research it enables in the years to come.