A Partial Label Metric Learning Algorithm for Class Imbalanced Data

Wenpeng Liu, Li Wang, Jie Chen, Yu Zhou, Ruirui Zheng, Jianjun He
Proceedings of The 13th Asian Conference on Machine Learning, PMLR 157:1413-1428, 2021.

Abstract

The performance of machine learning algorithms depends on the distance metric, in addition to the model and loss function, etc. The partial label metric learning technique can improve the accuracy of partial label learning algorithms by using training data to learn a better distance metric, which has gradually attracted the attention of scholars in recent years. The essence of partial label learning is mainly to deal with multi-class classification problems, while class imbalance is a common phenomenon in these problems. The class imbalanced problem affects the prediction accuracy of minority class samples, but the current partial label metric learning algorithms rarely consider the problem. In this paper, we propose two partial label metric learning algorithms (PL-CCML-SFN and PL-CCML-LDD) that can solve the class imbalanced problem. The basic idea is to add a regularization term to the objective function of the PL-CCML model, which can induce each class to be uniformly distributed in the new metric space and thus play the role of balancing each class. The experimental results show that these two algorithms, compared with the existing partial label metric learning algorithms, have improved the overall performance on the class imbalanced data.

Cite this Paper


BibTeX
@InProceedings{pmlr-v157-liu21f, title = {A Partial Label Metric Learning Algorithm for Class Imbalanced Data}, author = {Liu, Wenpeng and Wang, Li and Chen, Jie and Zhou, Yu and Zheng, Ruirui and He, Jianjun}, booktitle = {Proceedings of The 13th Asian Conference on Machine Learning}, pages = {1413--1428}, year = {2021}, editor = {Balasubramanian, Vineeth N. and Tsang, Ivor}, volume = {157}, series = {Proceedings of Machine Learning Research}, month = {17--19 Nov}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v157/liu21f/liu21f.pdf}, url = {https://proceedings.mlr.press/v157/liu21f.html}, abstract = {The performance of machine learning algorithms depends on the distance metric, in addition to the model and loss function, etc. The partial label metric learning technique can improve the accuracy of partial label learning algorithms by using training data to learn a better distance metric, which has gradually attracted the attention of scholars in recent years. The essence of partial label learning is mainly to deal with multi-class classification problems, while class imbalance is a common phenomenon in these problems. The class imbalanced problem affects the prediction accuracy of minority class samples, but the current partial label metric learning algorithms rarely consider the problem. In this paper, we propose two partial label metric learning algorithms (PL-CCML-SFN and PL-CCML-LDD) that can solve the class imbalanced problem. The basic idea is to add a regularization term to the objective function of the PL-CCML model, which can induce each class to be uniformly distributed in the new metric space and thus play the role of balancing each class. The experimental results show that these two algorithms, compared with the existing partial label metric learning algorithms, have improved the overall performance on the class imbalanced data.} }
Endnote
%0 Conference Paper %T A Partial Label Metric Learning Algorithm for Class Imbalanced Data %A Wenpeng Liu %A Li Wang %A Jie Chen %A Yu Zhou %A Ruirui Zheng %A Jianjun He %B Proceedings of The 13th Asian Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2021 %E Vineeth N. Balasubramanian %E Ivor Tsang %F pmlr-v157-liu21f %I PMLR %P 1413--1428 %U https://proceedings.mlr.press/v157/liu21f.html %V 157 %X The performance of machine learning algorithms depends on the distance metric, in addition to the model and loss function, etc. The partial label metric learning technique can improve the accuracy of partial label learning algorithms by using training data to learn a better distance metric, which has gradually attracted the attention of scholars in recent years. The essence of partial label learning is mainly to deal with multi-class classification problems, while class imbalance is a common phenomenon in these problems. The class imbalanced problem affects the prediction accuracy of minority class samples, but the current partial label metric learning algorithms rarely consider the problem. In this paper, we propose two partial label metric learning algorithms (PL-CCML-SFN and PL-CCML-LDD) that can solve the class imbalanced problem. The basic idea is to add a regularization term to the objective function of the PL-CCML model, which can induce each class to be uniformly distributed in the new metric space and thus play the role of balancing each class. The experimental results show that these two algorithms, compared with the existing partial label metric learning algorithms, have improved the overall performance on the class imbalanced data.
APA
Liu, W., Wang, L., Chen, J., Zhou, Y., Zheng, R. & He, J.. (2021). A Partial Label Metric Learning Algorithm for Class Imbalanced Data. Proceedings of The 13th Asian Conference on Machine Learning, in Proceedings of Machine Learning Research 157:1413-1428 Available from https://proceedings.mlr.press/v157/liu21f.html.

Related Material